Yıl: 2022 Cilt: 31 Sayı: 1 Sayfa Aralığı: 15 - 20 Metin Dili: Türkçe DOI: 10.17827/aktd.1001226 İndeks Tarihi: 29-07-2022

Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri

Öz:
Kanserler genel olarak çoklu genetik ve epigenetik anormallikler içermekte fakat birkaç anahtar gen sayesinde malign fenotip ve hücresel sağkalımın devamlılığı sağlanmaktadır. PI3K/Akt/mTOR yolağı önemli birçok fizyolojik olaylarda rol alan merkezi bir sinyal akım sistemidir. PI3K/Akt/mTOR yolağı birçok tümör çeşidi tarafından kullanıldığından bu yolağa karşı kullanılan inhibitörlerin geniş bir terapötik etkinliğinin olabileceği düşünülmektedir. Tekli tedavide bu inhibitörlerin hiçbiri ile faz 1 çalışmalarda önemli cevap oranları elde edilememiş olup yüksek dozların kısa sürelerde verilmesi ve değişik yolaklara etkili olabilecek ilaçların kombine edilmesi gibi diğer seçenekler araştırılmaktadır.
Anahtar Kelime: mTOR PI3K hedefe yönelik tedavi Akt

Targeted Cancer Therapy: PI3K/Akt/mTOR Inhibitors

Öz:
Cancers generally contain multiple genetic and epigenetic abnormalities, but several key genes maintain the malignant phenotype and cellular survival. The PI3K/Akt/mTOR pathway is a central signaling system that plays a role in many important physiological events. Since the PI3K/Akt/mTOR pathway is used by many tumor types, it is thought that inhibitors used against this pathway may have a wide therapeutic efficacy. Significant response rates could not be obtained in phase 1 studies with any of the agents in monotherapy, and other options are being investigated by administering high doses in short periods and combining drugs that may affect different pathways.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P. Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 2008;8:393-412.
  • 2. Weinstein IB, Joe AK. Mechanisms of disease: oncogene addiction-a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 2006;3:448-457.
  • 3. Tokunaga E, Oki E, Egashira A, Sadanaga N, Morita M, Kakeji Y et al. Deregulation of the Akt pathway in human cancer. Curr Cancer Drug Targets 2008;8:27-36.
  • 4. Workman P, Clarke PA, Guillard S, Raynaud FI. Drugging the PI3 kinome. Nat Biotechnol 2006;24:794-96.
  • 5. Lopiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 2008;11:32-50.
  • 6. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 2005;24:7482-92.
  • 7. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 2006;125:733-47.
  • 8. Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E et al. Critical role for the p110alpha phosphoinositide-3- OH kinase in growth and metabolic regulation. Nature 2006;441:366-70.
  • 9. Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway–beyond rapalogs. Oncotarget 2010;1:530- 43.
  • 10. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictormTOR complex. Science 2005;307:1098-101.
  • 11. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7:606-19.
  • 12. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857-68.
  • 13. Luo J, Sobkiw CL, Hirshman MF, Logsdon MN, Li TQ, Goodyear LJ et al. Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia. Cell Metab 2006;3:355-66.
  • 14. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 1998;95:13513-8.
  • 15. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007;133:647-58.
  • 16. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997;16:64-7.
  • 17. Markman B, Atzori F, Perez-Garcia J, Tabernero J, Baselga J. Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol 2010;21:683-91.
  • 18. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 2008;105:2652-7.
  • 19. Stein RC. Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr Relat Cancer 2001;8:237-48.
  • 20. Marone R, Cmiljanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase-Moving towards therapy. Biochim Biophys Acta 2008;1784:159-85.
  • 21. Garlich J, Shelton C, Qi W, Liu X, Cooke L, Mahadevan D. Update on the Novel Prodrug Dual mTOR/PI3K Inhibitor SF1126. In: Cambridge Healthtech Institute’s 8th Annual Next-Gen Kinase Inhibitors Oncology & Beyond Conference. Cambridge, Massachusetts; 2010.
  • 22. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008;7:1851-63.
  • 23. Eichhorn PJ, Gili M, Scaltriti M, Serra V, Guzman M, Nijkamp W et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 2008;68:9221-30.
  • 24. Jang DK, Lee YG, Chan Chae Y, Lee JK, Paik WH, Lee SH, Kim YT, Ryu JK. GDC-0980 (apitolisib) treatment with gemcitabine and/or cisplatin synergistically reduces cholangiocarcinoma cell growth by suppressing the PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun. 2020;529:1242-8.
  • 25. Zhang YC, Wu CG, Li AM, Liang Y, Ma D, Tang XL. Oxaliplatin and Gedatolisib (PKI-587) Co-Loaded Hollow Polydopamine Nano-Shells with Simultaneous Upstream and Downstream Action to Re-Sensitize Drugs-Resistant Hepatocellular Carcinoma to Chemotherapy. J Biomed Nanotechnol. 2021;17:18-36.
  • 26. Garrido-Castro AC, Saura C, Barroso-Sousa R, Guo H, Ciruelos E, Bermejo B et al. Phase 2 study of buparlisib (BKM120), a pan-class I PI3K inhibitor, in patients with metastatic triple-negative breast cancer. Breast Cancer Res. 2020;22:120.
  • 27. Wheler J, Mutch D, Lager J, Castell C, Liu L, Jiang J et al. Phase I Dose-Escalation Study of Pilaralisib (SAR245408, XL147) in Combination with Paclitaxel and Carboplatin in Patients with Solid Tumors. Oncologist. 2017;22:377-e37.
  • 28. Ihle NT, Lemos R Jr, Wipf P, Yacoub A, Mitchell C, Siwak D et al. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res 2009;69:143-50.
  • 29. Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 2007;67:5840-50.
  • 30. Maffei R, Fiorcari S, Martinelli S, Potenza L, Luppi M, Marasca R. Targeting neoplastic B cells and harnessing microenvironment: the "double face" of ibrutinib and idelalisib. J Hematol Oncol. 2015;8:60.
  • 31. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ, et al. AKT independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 2009;16:21-32.
  • 32. Ghobrial IM, Roccaro A, Hong F, Weller E, Rubin N, Leduc R et al. Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstrom’s macroglobulinemia. Clin Cancer Res 2010;16:1033-41.
  • 33. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 2010;9:1956-67.
  • 34. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12:9-22.
  • 35. Blay JY. Updating progress in sarcoma therapy with mTOR inhibitors. Ann Oncol. 2011;22:280-7.
  • 36. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A et al. Global ARCC Trial. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007;356:2271-81.
  • 37. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S et al. RECORD‐1 Study Group. Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors. Cancer 2010;116:4256-65.
  • 38. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 2009;27:3822-9.
  • 39. Yao JC, Lombard-Bohas C, Baudin E, Kvols LK, Rougier P, Ruszniewski P et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 2010;28:69-76.
  • 40. O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006;66:1500-8.
  • 41. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al. Active-site inhibitors of mTOR target rapamycinresistant outputs of mTORC1 and mTORC2. PLoS Biol 2009;7:e38.
  • 42. Garcia-Echeverria C. Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment. Bioorg Med Chem Lett 2010;20:4308-12.
  • 43. Liang M, Dang H, Li Q, Huang W, Liu C. Effects of rapamycin and OSI-027 on α-SMA in lung tissue of SD rat pups with hyperoxic lung injury. Biochem Biophys Res Commun. 2021;556:39-44.
  • 44. Goodwin RA, Jamal R, Tu D, Walsh W, Dancey J, Oza AM et al. Clinical and toxicity predictors of response and progression to temsirolimus in women with recurrent or metastatic endometrial cancer. Gynecol Oncol. 2013;131:315-20.
  • 45. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008;14:1351-6.
  • 46. Andre F, Campone M, O'Regan R, Manlius C, Massacesi C, Sahmoud T et al. Phase I study of everolimus plus weekly paclitaxel and trastuzumab in patients with metastatic breast cancer pretreated with trastuzumab. J Clin Oncol. 2010;28:5110-5.
  • 47. Jerusalem G, Fasolo A, Dieras V, Cardoso F, Bergh J, Vittori L et al. Phase I trial of oral mTOR inhibitor everolimus in combination with trastuzumab and vinorelbine in pre-treated patients with HER2-overexpressing metastatic breast cancer. Breast Cancer Res Treat. 2011;125:447-55.
APA Küpeli S (2022). Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. , 15 - 20. 10.17827/aktd.1001226
Chicago Küpeli Serhan Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. (2022): 15 - 20. 10.17827/aktd.1001226
MLA Küpeli Serhan Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. , 2022, ss.15 - 20. 10.17827/aktd.1001226
AMA Küpeli S Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. . 2022; 15 - 20. 10.17827/aktd.1001226
Vancouver Küpeli S Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. . 2022; 15 - 20. 10.17827/aktd.1001226
IEEE Küpeli S "Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri." , ss.15 - 20, 2022. 10.17827/aktd.1001226
ISNAD Küpeli, Serhan. "Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri". (2022), 15-20. https://doi.org/10.17827/aktd.1001226
APA Küpeli S (2022). Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. Arşiv Kaynak Tarama Dergisi, 31(1), 15 - 20. 10.17827/aktd.1001226
Chicago Küpeli Serhan Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. Arşiv Kaynak Tarama Dergisi 31, no.1 (2022): 15 - 20. 10.17827/aktd.1001226
MLA Küpeli Serhan Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. Arşiv Kaynak Tarama Dergisi, vol.31, no.1, 2022, ss.15 - 20. 10.17827/aktd.1001226
AMA Küpeli S Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. Arşiv Kaynak Tarama Dergisi. 2022; 31(1): 15 - 20. 10.17827/aktd.1001226
Vancouver Küpeli S Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri. Arşiv Kaynak Tarama Dergisi. 2022; 31(1): 15 - 20. 10.17827/aktd.1001226
IEEE Küpeli S "Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri." Arşiv Kaynak Tarama Dergisi, 31, ss.15 - 20, 2022. 10.17827/aktd.1001226
ISNAD Küpeli, Serhan. "Kanserde Hedefe Yönelik Tedavi: PI3K/Akt/mTOR İnhibitörleri". Arşiv Kaynak Tarama Dergisi 31/1 (2022), 15-20. https://doi.org/10.17827/aktd.1001226