Yıl: 2021 Cilt: 60 Sayı: 4 Sayfa Aralığı: 227 - 237 Metin Dili: Türkçe DOI: 10.30797/madencilik.885042 İndeks Tarihi: 28-05-2022

Madencilik süreçlerinde membran teknolojileri ve uygulamaları

Öz:
Madencilikte membranlar, madencilik atıksularının arıtılması, atıksulardan değerli metal kazanımı, yüklü liç çözeltilerinin konsantrasyonu ve değerli metallerin kazanımı, Asit Maden Drenajı (AMD) arıtımı, asit, kostik ve siyanür geri kazanımı gibi farklı alanlarda kullanılmaktadır. Madencilikte membranlar, düşük maliyetli, kolay işletilebilir, çevreci, seçici, yüksek giderim verimi ve daha az yer kaplaması nedeniyle tercih edilmektedir. Bu çalışmada, madencilik endüstrisi tarafından Dünya’da ve ülkemizde kullanılmakta olan membran uygulamaları membran teknolojisindeki son gelişmeler ışığında değerlendirilmiştir. Bu değerlendirmelere göre yenilikçi membran proseslerinin gelişmesiyle membranların maliyet ve tıkanma sorunu gibi kritik özellikleri iyileştirilmiştir. Membran maliyetleri ve çalışma basınçları önemli oranda azalmış, tıkanma ve kirlenme sorunu kontrol edilebilir duruma gelmiştir. Böylece küresel ölçekte, madencilik endüstrisinde farklı amaçlarla membran kullanımı yaygınlaşmış ve ideal bir yöntem haline gelmiştir. Ülkemizde ise devam eden çalışmalarla birlikte yakın zamanda bu teknolojinin madencilikte yaygınlaşacağı öngörülmektedir.
Anahtar Kelime:

Membrane technologies and applications in mining processes

Öz:
In mining, membranes are used in different areas such as treatment of mining wastewater, precious metal recovery from wastewater, the concentration of loaded leach solutions and recovery of precious metals, Acid Mine Drainage (AMD) treatment, acid, caustic, and cyanide recovery. In mining, membranes are preferred because of their low cost, easy operation, environmentally friendly, selective, high removal efficiency, and take up less space. In this study, the membrane applications used by the mining industry in the world and our country have been evaluated in light of the latest developments in membrane technology. According to these evaluations, critical properties of membranes such as cost and clogging problems have been improved with the development of innovative membrane processes. Membrane costs and operating pressures have decreased significantly, and the problem of clogging and contamination has become controllable. Thus, its use for different purposes in the mining industry on a global scale has become widespread and an ideal method. In our country, along with ongoing studies, it is foreseen that this technology has recently become widespread in mining.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Agioutantis, Z. 2001. Book of Proceedings of İnternational Workshop on New Frontiers in Reclamation: Facts and Procedures in The Extractive Industries. Greece.
  • Aguiar, A.O, Andrade, L.H., Ricci, B.C., Pires W.L., Miranda, G.A, Amaral, M. C.S. 2016. Gold acid mine drainage treatment by membrane separation processes: an evaluation of the main operational conditions. Separation and Purification Technology, 170:360–369.
  • Ahn, K.H., Song, K.G., Cha, H.Y., Yeom, I.T. 1999. Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration. Desalination, 122:77-84.
  • Akcil, A., Koldas, S. 2006. Acid Mine Drainage (AMD) causes, treatment and case studies. Journal of Cleaner Production, 14, 1139-1145.
  • Aksu, H. 2019. Türkiye’de içmesuyu arıtımında membran uygulamaları ve uygulama aşamasında karşılaşılan işletme problemleri. Tarım ve Orman Bakanlığı, Uzmanlık Tezi.
  • Alvarenga, J., Ainge Y., Williams, C., Maltz, A., Blough, T., Khan, M., Aizenberg, J. 2018. Research update: liquid gated membrane filtration performance with ınorganic particle suspensions featured. APL Materials, 6, 100703, https://doi.org/10.1063/1.5047480.
  • Al-Zoubi, H., Rieger, A., Steinberger, P., Pelz, W., Haseneder, R., Hartel, G. 2010. Nanofiltration of acid mine drainage. Desalination and Water Treatment, 21, 148–161.
  • Al-Zoubi, H., Rieger, A., Steinberger, P., Pelz, W., Haseneder, R., Hartel, G. 2010. Nanofiltration of acid mine drainage. Desalination and Water Treatment, 21, 148–161.
  • Andrade, L.H., Aguiar, A.O., Pires, W.L., Grossi, L.B., Amaral, M.C.S. 2017. Comprehensive bench- and pilot-scale investigation of NF for gold mining effluent treatment: Membrane performance and fouling control strategies. Separation and Purification Technology, 174, 44-56.
  • Arı, P. H. 2009. Türkiye’de içme suyu amaçlı büyük kapasiteli membran sistemlerinin maliyet analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi. Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B., Zhang, Z. 2019a. Biogas upgrading by cryogenic techniques. Environmental Chemistry Letters, 17, 1251–1261.
  • Barakat, M.A. 2011. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377.
  • Baveja, J.K., Willcox, M.D.P., Hume, E.B.H., Kumar, N., Odell, R. Poole-Warren, L.A. 2004. Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials, 25, 5003–5012.
  • Bayer, H. 2004. Water treatment at kennecott utah copper, Proceedings of the 2004 Ontario MEND Workshop, Sudbury, Ontario. Benito, Y., Ruiz, M.L. 2001. Reverse osmosis applied to metal finishing wastewater. Desalination, 142:229-234.
  • Benli, B., Koyuncu, İ. 2018. Sepiyolit inorganik nanofiberlerle hazırlanan polisülfon kompozit membran üretim yöntemi ve bu yöntemle elde edilen nanokil ve kompozit membran, Patent No: 2018/11210.
  • Binnemans, K., Pontikes, Y., Jones, P.T., Van Gerven, T., Blanpain, B. 2013. Recovery of Rare Earths from industrial waste residues: a concise review. In Proceedings of the 3rd International Slag Valorisation Symposium: The Transition to Sustainable Materials Management, 191-205.
  • Botz, M., Guzman, G., Sevilla, L. 2015. Campaign testing the yanacocha SART plant with high-copper feed solution. SME Annual Meeting, Society for Mining, Metallurgy&Exploration, Denver, CO.
  • Breuer, P. 2015. Dealing with copper in gold ores; ımplemented and future approaches. ALTA 2015, Gold-Precious Metals Proceedings, 2-20.
  • Cameron, R., Edwards, C. 2012. Membrane technology applications ın mineral processing. In Proceedings of the 44th Annual Canadian Mineral Processors Operators Conference, Ottawa, Ontario, Canada.
  • Carvalho, A.L., Maugeri, F., Pradanos, P., Silva, V., Hernandez, A. 2011. Separation of potassium clavulanate and potassium chloride by nanofiltration: transport and evaluation of membranes. Separation and Purification Technology, 83, 23–30.
  • Chai, X., Chen, G., Yue, P.L., Mi, Y. 1997. Pilot scale membrane separation of electroplating wastewater by reverse osmosis. Journal of Membrane Science, 123:235-242.
  • Chen, J.P., Hong, L., Wu, S.N., Wang, L. 2002. Elucidation of ınteractions between metal ıons and ca-alginate based ıon exchange resin by spectroscopic analysis and modeling simulation. Langmuir, 18:9413- 9421.
  • Chesters, S.P., Morton, P., Fazel M. 2016. Membranes and minewater–waste or revenue stream. proceedings mining meets water (IMWA)–Conflicts and solutions, Freiberg/Germany.
  • Cho, Y.H., Lee, H.D., Park, H.B. 2012. Integrated membrane processes for separation and purification of organic acid from a biomass fermentation process. Industrial & Engineering Chemistry Research, 51:10207– 10219.
  • Choi, Y., Ryu, S., Naidu, G., Lee, S., Vigneswaran, S. 2019. Integrated submerged membrane distillation-adsorption system for rubidium recovery. Separation and Purification Technology, 218, 146–155.
  • Cop, M., Aygün, A., Nas, B., Gökay, M.K. 2018. Arıtılmış atıksuların yeniden kullanımı, sanayi sektörleri uygulama klavuzları, Maden Sanayi. Çevre ve Şehircilik Bakanlığı ve Selçuk Üniversitesi.
  • Dai, X., Simons, A., Breuer, P. 2012. A Review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores. Minerals Engineering, 25, 1-13.
  • Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B. H., Costerton, J.W., Greenberg, E.P. 1998. The involvement of cell-to cell signals in the development of a bacterial biofilm. Science, 280, 295–298.
  • Dong, Y.H., Wang, L.H., Xu, J.L., Zhang, H.B., Zhang, X.F., Zhang, L.H. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acylhomoserine lactonase. Nature, 411, 813-817.
  • Edwards, C.R. 2010. Considerations for uranium extraction process plant design. In Uranium 2010, 3rd International Conference on Uranium, The 40th Annual Hydrometallurgical Meeting of the Metallurgical Society of CIM, edited by E.K. Lam, J.W. Rowson, E. Ozberk (eds), Saskatoon, Saskatchewan, 469-479.
  • Eliceche, A.M., Corvalan, S.M., Ortiz, I. 2002. Continuous operation of membrane processes for the treatment of ındustrial effluents. Computers and Chemical Engineering, 26:555-561.
  • EPA, 1983. Neutralization of acid mine drainage. Cincinnati, USA. EPA-United States Environmental Protection Agency, 1994b. Acid Mine Drainage Prediction. USEPA, Office of Solid Waste, Special Wastes Branch, EPA 530-R-94-036.
  • Eryıldız, B. 2019. Su/atıksulardan bor giderimi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul.
  • EU, 2006. Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the Management of Waste from Extractive Industries and Amending Directive 2004/35/EC (Mining Waste Directive).
  • Fleming, C. A. 2016. Cyanide recovery, Gold Ore Processing, 2nd Edition, Chapter 36, Editör: Adams, M. D., Elsevier.
  • Franus, W., Wiatros-Motyka, M.M., Wdowin, M. 2015. Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22(12), 9464-9474.
  • Fu, F., Wang, Q. 2011. Removal of heavy metal ıons from wastewaters: A review. Journal Of Environmental Management, 92(3), 407-418. T. Uysal / Scientific Mining Journal, 2021, 60(4), 227-237
  • Goode, J.R.; Brown, J.A. 2010. The Michelin uranium project, Labrador, Canada. Metallurgical test work, economic studies and process design.
  • In: Proceedings of the 3rd International Conference on Uranium, 40th annual Hydrometallurgy Meeting, Saskatoon, Saskatchewan, Canada. Harato, T., Smith, P., Oraby, E. 2012. Recovery of soda from bauxite residue by acid leaching and electrochemical processing. Proceedings of the 9th International Alumina Quality Workshop, Perth, pp. 193–201.
  • Harrison Western Process Technologies, 1997. Membrane plant for preconcentration of PLS. Arizona Conference of AIME, Hydrometallurgical Division, Cananea, Mexico.
  • Hedjazi F., Monhemius A.J. 2018. the ındustrial application of ultrafiltation and reverse osmosis for the recovery of copper, silver and cyanide from gold leach liquors. Extraction 2018, Volume: Proceedings, pp.1883-1891. Ottawa, Canada.
  • http://www.marketsandmarkets.com/Market-Reports/membranes-market- 1176.html. Erişim Tarihi: 02.02.2021.
  • Hwang, B.K., Lee, W.N., Yeon, K.M., Park, P.K., Lee, C. H., Chang, I.S., Drews, A. Kraume, M. 2008. Correlating TMP ıncreases with microbial characteristics in the bio-cake on the membrane surface in a membrane bioreactor. Environmental Science and Technology, 42(11), 3963-3968.
  • Irving, M. 2018. New desalination membrane produces both drinking water and lithium. https://newatlas.com/metal-organic-framework-filter- water-lithium/53356/ Erişim Tarihi: 02.02.2021.
  • Karadeniz, M. 2008. Asit maden drenajı ve çözümü. TMMOB Maden Mühendisleri Odası Yayını, Oda Yayın No:146, 231.
  • Kesiemea, U. K. Aral, H. 2015. Application of membrane distillation and solvent extraction for water and acid recovery from acidic mining waste and process solutions. Journal of Environmental Chemical Engineering, 3, 2050-2056.
  • Kuyucak, N. ve Akcil, A. 2013. Cyanide and removal options from effluents in gold mining and metallurgical processes, Minerals Engineering, 50–51, 13–29.
  • Lien, L.A. 2002. Membrane Technologies for Mining and Refinery Processing Improvements. Recycling and Waste Treatment in Mineral and Metal Processing: Technical and Economic Aspects. Editor Bo Bjorkman, Caisa Samuelsson, Lulea University.
  • Lien, L.A. 2008. HW Process Technologies’ Engineered Membrane Separation (EMS) Systems for Hydrometallurgical Applications, in Proceedings of the 6th International Symposium Hydrometallurgy, pp 257-261 Colorado.
  • Lien, L.A. 2009. Engineered Membrane Systems (EMS®) for ARD&other Hydrometallurgical Applications, INAP Water Treatment Workshop October 2009.
  • López, J., Reig, M., Gibert, O., Cortina, J.L. 2019. Recovery of sulphuric acid and added value metals (Zn, Cu and rare earths) from acidic mine waters using nanofiltration membranes. Separation Purification Technology, 212:180–190.
  • Manis, A., Soldenhoff, K., Ovinis, M. 2011. Membranes in uranium processing. The AusIMM International Uranium Conference Perth, Australia. Melnyk, L., Goncharuk, V., Butnyk, I., Tsapiuk, E. 2005. Boron removal from natural and wastewaters using combined sorption/membrane process. Desalination, 185, 147-157.
  • Memtek Bülteni, Haziran 2018, Yıl: 3, Sayı: 5. www.memtek.org. Erişim Tarihi: 02.02.2021.
  • Memtek Bülteni, Ekim 2019, Yıl: 4, Sayı: 7. www.memtek.org. Erişim Tarihi: 02.02.2021.
  • Meschke K, Herdegen V, Aubel, T., Janneck, E., Repke, J.U. 2015. Treatment of opencast lignite mining induced acid mine drainage (AMD) using a rotating microfiltration system. Journal of Environmental Chemical Engineering, 3:2848–2856.
  • Meschke K, Herdegen V, Aubel, T., Janneck, E., Repke, J.U. 2015. Treatment of opencast lignite mining induced acid mine drainage (AMD) using a rotating microfiltration system. Journal of Environmental Chemical Engineering, 3:2848–2856.
  • Mills, C. 1995. An AMD/ARD dedicated blog based on the text of a presentation given mills to british columbia high school science teachers. Seminar: Acid Rock Drainage at the Cordilleran Roundup, Vancouver. Mortazavi, S. 2008. Application of membrane separation technology to mitigation of mine effluente and acidic Drainage, Mine Environment Neutral Drainage (MEND) Report 3.15.1.Avalible online: http:// mend-nedem.org/wp-content/ uploads/2013/01/3.15.1.pdf.
  • Mulder, M. 1996. Basic Principl e of membrane technology, 2nd edition, Kluver Academic Publishers, ABD.
  • Murthy, Z.V.P., Gupta, S.K. 1999. Sodium cyanide separation and parameter estimation for reverse osmosis thin film composite polyamide membrane. Journal of Membrane Science, 154, 89-103.
  • Özgür, C., Şan, O. 2008. Slip cast forming of multilayer ceramic filter by fine particles migration. Ceramics International, 34, 1935–1939.
  • Petrov, S., Nenov, V. 2003. Removal and recovery of copper from wastewater by a complexation-ultrafiltration process. Desalination, 162, 201-209.
  • Protano, G., Riccobono, F. 2002. High contents of rare earth elements (REEs) in Stream Waters of a Cu–Pb–Zn Mining Area. Environmental Pollution, 117(3), 499-514.
  • Resmi Gazete, 2015. Maden atıkları yönetmeliği. Çevre ve Şehircilik Bakanlığı, 15 Temmuz 2015, Sayı: 29417.
  • Rodriguez, P.M., Samper, E., Varo, G.P., Prats, R.D. 2002. Analysis of the variation in the permeate flux and of the efficiency of the recovery of mercury by polyelectrolyte enhanced ultrafiltration. Desalination, 151:247-251.
  • Rodríguez‑Galán, M., Baena‑Moreno, F.M., Vázquez, S., Arroyo‑Torralvo, F., Vilches, L.F., Zhang, Z. 2019. Remediation of acid mine drainage. Environmental Chemistry Letters, 17:1529–1538.
  • Sceresini, B., Breuer, P. 2016. Gold-Copper Ores, Gold Ore Processing. 2nd Edition, Chapter 43, Ed: M. D. Adams, Elsevier.
  • SGS, 2013. Cyanide recovery, SGS Minerals Services –T3 SGS 019, 11-2013.
  • Sis, H., Uysal, T. 2012. Adsorption of chromium ions in water on Kuluncak (Malatya) vermiculites. Proceedings of XIII. International Mineral Processing Symposium, Bodrum, Turkey.
  • Skousen, J.G., Sextone A., Ziemkiewicz, P.F. 2000. Acid mine drainage control and treatment. In: Barnhisel, R. I., Darmody, R.G., Daniels, L. Agronomy Monograph Number 41. Madison WI, American Society of Agronomy.
  • Smith, P., Harato, T. 2012. Recovery of soda from bauxite residue. Patent Application WO 2012/145797 A1.
  • Soldenhoff, K., McCulloch, J., Manis, A., Macintosh, P. 2005. Nanofiltration in metal and acid recovery. ın nanofiltration-principles and application. Elsevier Advanced Technology: Oxford, UK, Chapter 19, pp. 459–477.
  • Stewart D., Noriman, T., Cordery-Cotter, S. 1997. Utilization of a ceramic membrane for acid mine drainage treatment, Tailings and Mine Waste ’97. Balkema, Rotterdam, ISBN 9054108576.
  • Sugita, N. 1989. Process and apparatus for recovery of precious metal compound, US Patent, 4880511.
  • Taggart, R.K., Hower, J.C., Dwyer, G.S., Hsu-Kim, H. 2016. Trends in the Rare Earth Element content of us-based coal combustion fly ashes. Environmental Science&Technology, 50(11), 5919-5926.
  • Tangüler, M. 2015. Characterization of fly ashes from thermal power plants in turkey, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi. Topacık, M. S. 2006, Çöp Sızıntı Sularının Nanofiltrasyon ile Arıtılması. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 84 s.
  • Trumm D. 2010. Selection of active and passive treatment systems for AMD–flow charts for new zealand conditions. New Zealand Journal Of Geology and Geophysics, 53(2–3):195–210.
  • TÜİK, 2019. Maden işletmeleri su, atıksu ve atık istatistikleri, 2018, Sayı: 30670, 19 Aralık 2019.
  • Uysal, T., 2012. Su içerisindeki ağır metal iyonlarının kuluncak (Malatya) vermikülitleri üzerine adsorpsiyonu. Yüksek Lisans Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.
  • Verplanck, P.L., Nordstrom, D.K., Taylor, H.E., Kimball, B.A. 2004. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Applied Geochemistry, 19(8), 1339-1354.
  • Wadekar, S.S., Vidic, R.D. 2018. Comparison of ceramic and polymeric nanofiltration membranes for treatment of abandoned coal mine drainage. Desalination, 440:135–145.
  • Williams, A. 2016. 3D printed water technology: entering the mainstream. https://www.waterworld.com/articles/wwi/print/volume-31/ issue-4/technology-case-studies/3d-printed-water-technology-entering- the-mainstream. Erişim Tarihi:02.02.2021.
  • Wong, F.S., Qin, J.J., Wai, M.N., Lim, A.L., Adiga, M. 2002. A pilot study on a membrane process for the treatment and recycling of spent final rinse water from electrolysis plating. Separation and Purification Technology, 29:41-51.
  • Yücel, Ş.D. 2013. Asidik su kaynaklarının karakteristikleri, oluşumunu sağlayan faktörler ve hidrojeokimyasal özellikleri (Çan-Bayramiç Örneği), Doktora Tezi, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale.
  • Zhang, J., Zhou, J., Liu, Y., Fane, A.G. 2010. A comparison of membrane fouling under constant and variable organic loadings in submerge membrane bioreactors. Water Research, 44, 5407-5413.
  • Zhang, Z., Yan, Y., Zhang, L., Zhang, L., Chen, Y., Ju, S. 2014. CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 19:311–316.
APA UYSAL T (2021). Madencilik süreçlerinde membran teknolojileri ve uygulamaları. , 227 - 237. 10.30797/madencilik.885042
Chicago UYSAL TURAN Madencilik süreçlerinde membran teknolojileri ve uygulamaları. (2021): 227 - 237. 10.30797/madencilik.885042
MLA UYSAL TURAN Madencilik süreçlerinde membran teknolojileri ve uygulamaları. , 2021, ss.227 - 237. 10.30797/madencilik.885042
AMA UYSAL T Madencilik süreçlerinde membran teknolojileri ve uygulamaları. . 2021; 227 - 237. 10.30797/madencilik.885042
Vancouver UYSAL T Madencilik süreçlerinde membran teknolojileri ve uygulamaları. . 2021; 227 - 237. 10.30797/madencilik.885042
IEEE UYSAL T "Madencilik süreçlerinde membran teknolojileri ve uygulamaları." , ss.227 - 237, 2021. 10.30797/madencilik.885042
ISNAD UYSAL, TURAN. "Madencilik süreçlerinde membran teknolojileri ve uygulamaları". (2021), 227-237. https://doi.org/10.30797/madencilik.885042
APA UYSAL T (2021). Madencilik süreçlerinde membran teknolojileri ve uygulamaları. Bilimsel Madencilik Dergisi, 60(4), 227 - 237. 10.30797/madencilik.885042
Chicago UYSAL TURAN Madencilik süreçlerinde membran teknolojileri ve uygulamaları. Bilimsel Madencilik Dergisi 60, no.4 (2021): 227 - 237. 10.30797/madencilik.885042
MLA UYSAL TURAN Madencilik süreçlerinde membran teknolojileri ve uygulamaları. Bilimsel Madencilik Dergisi, vol.60, no.4, 2021, ss.227 - 237. 10.30797/madencilik.885042
AMA UYSAL T Madencilik süreçlerinde membran teknolojileri ve uygulamaları. Bilimsel Madencilik Dergisi. 2021; 60(4): 227 - 237. 10.30797/madencilik.885042
Vancouver UYSAL T Madencilik süreçlerinde membran teknolojileri ve uygulamaları. Bilimsel Madencilik Dergisi. 2021; 60(4): 227 - 237. 10.30797/madencilik.885042
IEEE UYSAL T "Madencilik süreçlerinde membran teknolojileri ve uygulamaları." Bilimsel Madencilik Dergisi, 60, ss.227 - 237, 2021. 10.30797/madencilik.885042
ISNAD UYSAL, TURAN. "Madencilik süreçlerinde membran teknolojileri ve uygulamaları". Bilimsel Madencilik Dergisi 60/4 (2021), 227-237. https://doi.org/10.30797/madencilik.885042