Yıl: 2022 Cilt: 6 Sayı: 1 Sayfa Aralığı: 12 - 25 Metin Dili: İngilizce DOI: 10.30518/jav.1031989 İndeks Tarihi: 29-07-2022

A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance

Öz:
In this article, numerical and experimental analyzes were made by adding winglet and endless blade to the tip of the airfoil to improve the wind turbine blade performance. Similarly, the change in performance was investigated by making notches at different sizes and distances on the trailing edge of the wing structure, inspired by the creatures in nature. First of all, the designed wing structures were analyzed by numerical analysis as a fixed wing, and the lift and drag forces were examined and the aerodynamic performance parameters were examined. Then, the winglet, endless wing and trailing edge notch were mounted to the wing structure cast from a 3D printer, and the energy parameters produced by each design in the wind tunnel were examined. In curved wings, the stress values produced depending on the size of the endless wing structure added to the wing tip have changed and up to 15% aerodynamic performance improvement has been observed in the designed wing structure. In addition, the design was experimentally examined on conventional fixed blades, and up to 6% improvement was observed on fixed blades.
Anahtar Kelime: Wing Design Biomimetic Aerodynamic Airfoil Wind Tunnel

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Bodling, A., Agrawal, B. R., Sharma, A., Clark, I., Alexander, W. N., & Devenport, W. J. (2017). Numerical investigations of bio-inspired blade designs to reduce broadband noise in aircraft engines and wind turbines. In 55th AIAA Aerospace Sciences Meeting (p. 0458).
  • Chu, Y. J., & Chong, W. T. (2017). A biomimetic wind turbine inspired by Dryobalanops aromatica seed: Numerical prediction of rigid rotor blade performance with OpenFOAM®. Computers & Fluids, 159, 295-315.
  • Clark, I. A., Alexander, W. N., Devenport, W., Glegg, S., Jaworski, J. W., Daly, C., & Peake, N. (2017). Bioinspired trailing-edge noise control. AIAA Journal, 55(3), 740-754.
  • Cognet, V., Courrech du Pont, S., Dobrev, I., Massouh, F., & Thiria, B. (2017). Bioinspired turbine blades offer new perspectives for wind energy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2198), 20160726.
  • Dominy, R.; Lunt, P.; Bickerdyke, A.; Dominy, J. Self-starting capability of a darrieus turbine.Proc. Inst. Mech. Eng. Part A J. Power Energy 2007, 221, 111–120.
  • Fish, F. E., Weber, P. W., Murray, M. M., & Howle, L. E. (2011). The tubercles on humpback whales' flippers: application of bio-inspired technology.
  • Gasch, R.; Twele, J. Wind Power Plants; Solarpraxis: Berlin, Germany, 2002.
  • Görgülü, Y. F., Özgür, M. A., & Köse, R. (2021). CFD analysis of a NACA 0009 aerofoil at a low reynolds number. Politeknik Dergisi, 1-1.
  • Hau, E. Wind Turbines, Fundamentals, Technologies, Application, Economics, 2nd ed.; Springer:Berlin, Germany, 2006.
  • Herreraa, C., Correaa, M., Villadaa, V., Vanegasb, J. D., Garcıaa, J. G., Nieto-Londonoa, C., & Sierra-Péreza, J. (2018). Structural Design and Manufacturing Process of a Low Scale Bio-Inspired Wind Turbine Blades.
  • Ikeda, T., Tanaka, H., Yoshimura, R., Noda, R., Fujii, T., & Liu, H. (2018). A robust biomimetic blade design for micro wind turbines. Renewable Energy, 125, 155-165.
  • Jaworski, J. W., & Peake, N. (2013). Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls. Journal of Fluid Mechanics, 723, 456-479.
  • Johansen, J., Sørensen, N. N. 2007. Numerical analysis of winglets on wind turbine blades using CFD. In European Wind Energy Congress. Milano: EWEA.
  • Johari, H., Henoch, C., Custodio, D., & Levshin, A. (2007). Effects of leading-edge protuberances on airfoil performance. AIAA journal, 45(11), 2634-2642.
  • Johnson, G. L. (1985). Wind energy systems (pp. 147-149). Englewood Cliffs, NJ: Prentice-Hall. Kalmikov, A. (2017). Wind power fundamentals. In Wind Energy Engineering (pp. 17-24). Academic Press.
  • Külekçi, Ö. C. (2009). Yenilenebilir enerji kaynakları arasında jeotermal enerjinin yeri ve Türkiye açısından önemi. Ankara Üniversitesi Çevrebilimleri Dergisi, 1(2), 83-91.
  • Oerlemans, S., Fisher, M., Maeder, T., & Kögler, K. (2009). Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA journal, 47(6), 1470-1481.
  • Özkaya, M., Variyenli, H., & Korkmaz, M. (2008). Rüzgar enerjisinden elektrik enerjisi üretimi ve Kayseri ili için çevresel etkilerinin değerlendirilmesi.
  • Schubel, Peter J., and Richard J. Crossley. "Wind turbine blade design." Energies 5.9 , 2012: 3425-3449.
  • Seidel, C., Jayaram, S., Kunkel, L., & Mackowski, A. (2017). Structural analysis of biologically inspired small wind turbine blades. International Journal of Mechanical and Materials Engineering, 12(1), 1-9.
  • Shi, W., Atlar, M., & Norman, R. (2017). Detailed flow measurement of the field around tidal turbines with and without biomimetic leading-edge tubercles. Renewable Energy, 111, 688-707.
  • Uzun, M. & Çoban, S. (2021). Aerodynamic Performance Improvement with Morphing Winglet Design . Journal of Aviation , 5 (1) , 16-21.
  • Wright, G. (2017). Bio-Inspired Wind Turbine Blade Profile Design (Doctoral dissertation).
  • Yilmaz, S., & Kalkan, D. K. (2017). Enerji güvenliği kavrami: 1973 petrol krizi işiğinda bir tartişma. Uluslararası Kriz ve Siyaset Araştırmaları Dergisi, 1(3), 169-199.
APA uzun m, OZDEMIR M, YILDIRIM Ç (2022). A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. , 12 - 25. 10.30518/jav.1031989
Chicago uzun metin,OZDEMIR MUSTAFA,YILDIRIM ÇAGRI VAKKAS A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. (2022): 12 - 25. 10.30518/jav.1031989
MLA uzun metin,OZDEMIR MUSTAFA,YILDIRIM ÇAGRI VAKKAS A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. , 2022, ss.12 - 25. 10.30518/jav.1031989
AMA uzun m,OZDEMIR M,YILDIRIM Ç A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. . 2022; 12 - 25. 10.30518/jav.1031989
Vancouver uzun m,OZDEMIR M,YILDIRIM Ç A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. . 2022; 12 - 25. 10.30518/jav.1031989
IEEE uzun m,OZDEMIR M,YILDIRIM Ç "A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance." , ss.12 - 25, 2022. 10.30518/jav.1031989
ISNAD uzun, metin vd. "A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance". (2022), 12-25. https://doi.org/10.30518/jav.1031989
APA uzun m, OZDEMIR M, YILDIRIM Ç (2022). A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. Journal of aviation (Online), 6(1), 12 - 25. 10.30518/jav.1031989
Chicago uzun metin,OZDEMIR MUSTAFA,YILDIRIM ÇAGRI VAKKAS A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. Journal of aviation (Online) 6, no.1 (2022): 12 - 25. 10.30518/jav.1031989
MLA uzun metin,OZDEMIR MUSTAFA,YILDIRIM ÇAGRI VAKKAS A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. Journal of aviation (Online), vol.6, no.1, 2022, ss.12 - 25. 10.30518/jav.1031989
AMA uzun m,OZDEMIR M,YILDIRIM Ç A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. Journal of aviation (Online). 2022; 6(1): 12 - 25. 10.30518/jav.1031989
Vancouver uzun m,OZDEMIR M,YILDIRIM Ç A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance. Journal of aviation (Online). 2022; 6(1): 12 - 25. 10.30518/jav.1031989
IEEE uzun m,OZDEMIR M,YILDIRIM Ç "A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance." Journal of aviation (Online), 6, ss.12 - 25, 2022. 10.30518/jav.1031989
ISNAD uzun, metin vd. "A Novel Biomimetic Wing Design and Optimizing Aerodynamic Performance". Journal of aviation (Online) 6/1 (2022), 12-25. https://doi.org/10.30518/jav.1031989