Yıl: 2022 Cilt: 24 Sayı: 70 Sayfa Aralığı: 81 - 90 Metin Dili: Türkçe DOI: 10.21205/deufmd.2022247009 İndeks Tarihi: 29-07-2022

Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi

Öz:
Son yıllarda, geçiş metali kalkojenleri (GMK) kendilerine özgü fiziksel ve kimyasal özelliklerinden dolayı çokça çalışılan malzeme gruplarından biri olmuştur. GMK’ler, optoelektronik uygulamalarda, hidrojen evrim reaksiyonları, enerji depolama sistemleri, güneş pili uygulamalarında ve radar emici sistemlerde sıkça kullanılmaktadır. Bu çalışmada, farklı çözücüler ve ısıl işlem süreçleri kullanılarak üretilen GMK grubundan olan MoS2 ince filmlerinin yapısal özellikleri araştırılmıştır. İnce filmler sol-gel spin kaplama yöntemi ile üretilmiştir. Filmlerin kristalizasyonu farklı sıcaklık değerlerinde vakum altında tutulan ve azot gazı (N2) akışı sağlanan fırın sisteminde sağlanmıştır. Isıl işlem sıcaklığı ve çözücü kimyasalın etkisi yapısal analiz metotları ile değerlendirilmiştir. Bu kapsamda, X-ışını kırınım metodu (XRD) ve Raman saçınım ve taramalı elektron mikroskop (SEM) metodu filmlerin yapısal analizlerinin yapılmasında kullanılmıştır.
Anahtar Kelime: MoS2 İnce film sol-jel termal ayrışma

Investigation of the Effect of Solvent and Heat Treatment Process on Structural Properties of MoS2 Thin Films

Öz:
In recent years, transition metal dichalcogenides (TMDCs) have become one of the most studied material groups due to their unique physical and chemical properties. The TMDCs are frequently used in optoelectronic applications, hydrogen evolution reactions, energy storage systems, solar cells, and radar absorbing systems. In this study, the structural properties of MoS2 thin films, belonging to one ofthe TMDCs group, produced by using different solvents and heat treatment processes were investigated. Thin films were produced by using the sol-gel spin coating technique. The crystallization of the films was ensured at different heat treatment temperature values under a vacuum atmosphere by introducing N2 gas flow. The effects of the heat treatment temperature and chemical solvent were evaluated by the structural characterizations techniques. Within this scope, the X-ray diffraction method (XRD), Raman scattering, and scanning electron microscope (SEM) were used to investigate the structural properties of films.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Lim, Y.R., W. Song, J.K. Han, Y.B. Lee, S.J. Kim, S. Myung, S.S. Lee, K.S. An, C.J. Choi, and J. Lim. 2016. Wafer-Scale, Homogeneous MoS2 Layers on Plastic Substrates for Flexible Visible-Light Photodetectors, Adv Mater, Cilt. 28(25), s. 5025-30. DOI: 10.1002/adma.201600606.
  • [2] Zardkhoshoui, A.M. and S.S.H. Davarani. 2018. Flexible asymmetric supercapacitors based on CuO@MnO2-rGO and MoS2-rGO with ultrahigh energy density, Journal of Electroanalytical Chemistry, Cilt. 827, s. 221-229. DOI: 10.1016/j.jelechem.2018.08.023.
  • [3] Sun, B., T. Shi, Z. Liu, Y. Wu, J. Zhou, and G. Liao. 2018. Large-area flexible photodetector based on atomically thin MoS2/graphene film, Materials & Design, Cilt. 154, s. 1-7. DOI: 10.1016/j.matdes.2018.05.017.
  • [4] Lin, L., W. Lei, S. Zhang, Y. Liu, G.G. Wallace, and J. Chen. 2019. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries, Energy Storage Materials, Cilt. 19, s. 408- 423. DOI: 10.1016/j.ensm.2019.02.023.
  • [5] Carroll, G.M., H. Zhang, J.R. Dunklin, E.M. Miller, N.R. Neale, and J. van de Lagemaat. 2019. Unique interfacial thermodynamics of few-layer 2D MoS2 for (photo)electrochemical catalysis, Energy & Environmental Science, Cilt. 12(5), s. 1648-1656. DOI: 10.1039/c9ee00513g.
  • [6] Xu, X., W. Zhong, X. Zhang, J. Dou, Z. Xiong, Y. Sun, T. Wang, and Y. Du. 2019. Flexible symmetric supercapacitor with ultrahigh energy density based on NiS/MoS2@N-rGO hybrids electrode, J Colloid Interface Sci, Cilt. 543, s. 147-155. DOI: 10.1016/j.jcis.2019.02.054.
  • [7] Huo, N., J. Yang, L. Huang, Z. Wei, S.S. Li, S.H. Wei, and J. Li. 2015. Tunable Polarity Behavior and SelfDriven Photoswitching in p-WSe(2)/n-WS(2) Heterojunctions, Small, Cilt. 11(40), s. 5430-8. DOI: 10.1002/smll.201501206.
  • [8] Yazyev, O.V. and A. Kis. 2015. MoS 2 and semiconductors in the flatland, Materials Today, Cilt. 18(1), s. 20-30. DOI: 10.1016/j.mattod.2014.07.005.
  • [9] Furchi, M.M., A. Pospischil, F. Libisch, J. Burgdorfer, and T. Mueller. 2014. Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett, Cilt. 14(8), s. 4785-91. DOI: 10.1021/nl501962c.
  • [10] Choi, W., N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y.H. Lee. 2017. Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today, Cilt. 20(3), s. 116-130. DOI: 10.1016/j.mattod.2016.10.002.
  • [11] Gołasa, K., M. Grzeszczyk, K.P. Korona, R. Bożek, J. Binder, J. Szczytko, A. Wysmołek, and A. Babiński. 2013. Optical Properties of Molybdenum Disulfide (MoS_2), Acta Physica Polonica A, Cilt. 124(5), s. 849-851. DOI: 10.12693/APhysPolA.124.849.
  • [12] Lin, Y.C., W. Zhang, J.K. Huang, K.K. Liu, Y.H. Lee, C.T. Liang, C.W. Chu, and L.J. Li. 2012. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization, Nanoscale, Cilt. 4(20), s. 6637-41. DOI: 10.1039/c2nr31833d.
  • [13] Ben Amara, I., E. Ben Salem, and S. Jaziri. 2016. Optoelectronic response and excitonic properties of monolayer MoS2, Journal of Applied Physics, Cilt. 120(5), s. 051707. DOI: 10.1063/1.4958948.
  • [14] Friedman, A.L., A.T. Hanbicki, F.K. Perkins, G.G. Jernigan, J.C. Culbertson, and P.M. Campbell. 2017. Evidence for Chemical Vapor Induced 2H to 1T Phase Transition in MoX2 (X = Se, S) Transition Metal Dichalcogenide Films, Sci Rep, Cilt. 7(1), s. 3836. DOI: 10.1038/s41598-017-04224-4.
  • [15] Calandra, M. 2013. Chemically exfoliated singlelayerMoS2: Stability, lattice dynamics, and catalytic adsorption from first principles, Physical Review B, Cilt. 88(24), s. 245428. DOI: 10.1103/PhysRevB.88.245428.
  • [16] Eda, G., H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla. 2011. Photoluminescence from chemically exfoliated MoS2, Nano Lett, Cilt. 11(12), s. 5111-6. DOI: 10.1021/nl201874w.
  • [17] George, A.S., Z. Mutlu, R. Ionescu, R.J. Wu, J.S. Jeong, H.H. Bay, Y. Chai, K.A. Mkhoyan, M. Ozkan, and C.S. Ozkan. 2014. Wafer Scale Synthesis and High Resolution Structural Characterization of Atomically Thin MoS2Layers, Advanced Functional Materials, Cilt. 24(47), s. 7461-7466. DOI: 10.1002/adfm.201402519.
  • [18] Akinwande, D., N. Petrone, and J. Hone. 2014. Twodimensional flexible nanoelectronics, Nat Commun, Cilt. 5, s. 5678. DOI: 10.1038/ncomms6678.
  • [19] He, M., Y.-J. Lin, C.-M. Chiu, W. Yang, B. Zhang, D. Yun, Y. Xie, and Z.-H. Lin. 2018. A flexible photothermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting, Nano Energy, Cilt. 49, s. 588-595. DOI: 10.1016/j.nanoen.2018.04.072.
  • [20] Lim, Y.R., J.K. Han, S.K. Kim, Y.B. Lee, Y. Yoon, S.J. Kim, B.K. Min, Y. Kim, C. Jeon, S. Won, J.H. Kim, W. Song, S. Myung, S.S. Lee, K.S. An, and J. Lim. 2018. Roll-to-Roll Production of Layer-Controlled Molybdenum Disulfide: A Platform for 2D Semiconductor-Based Industrial Applications, Adv Mater, Cilt. 30(5), s. 1705270. DOI: 10.1002/adma.201705270.
  • [21] Barzegar, M., A. Iraji zad, and A. Tiwari. 2019. On the performance of vertical MoS2 nanoflakes as a gas sensor, Vacuum, Cilt. 167, s. 90-97. DOI: 10.1016/j.vacuum.2019.05.033.
  • [22] Dalila, R.N., M.K. Md Arshad, S.C.B. Gopinath, W.M.W. Norhaimi, and M.F.M. Fathil. 2019. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions, Biosens Bioelectron, Cilt. 132, s. 248-264. DOI: 10.1016/j.bios.2019.03.005.
  • [23] Gan, X., L.Y.S. Lee, K.-y. Wong, T.W. Lo, K.H. Ho, D.Y. Lei, and H. Zhao. 2018. 2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies, ACS Applied Energy Materials, Cilt. 1(9), s. 4754-4765. DOI: 10.1021/acsaem.8b00875.
  • [24] Hartmann, G., M. Lee, and G.S. Hwang. 2019. Structural, electronic and adsorption properties of monolayer 2H-MoS2 on graphene substrates: A computational study, Inorganic Chemistry Communications, Cilt. 106, s. 135-138. DOI: 10.1016/j.inoche.2019.05.029.
  • [25] Kadantsev, E.S. and P. Hawrylak. 2012. Electronic structure of a single MoS2 monolayer, Solid State Communications, Cilt. 152(10), s. 909-913. DOI: 10.1016/j.ssc.2012.02.005.
  • [26] Acerce, M., D. Voiry, and M. Chhowalla. 2015. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat Nanotechnol, Cilt. 10(4), s. 313-8. DOI: 10.1038/nnano.2015.40.
  • [27] Wang, H., Z. Lu, S. Xu, D. Kong, J.J. Cha, G. Zheng, P.C. Hsu, K. Yan, D. Bradshaw, F.B. Prinz, and Y. Cui. 2013. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction, Proc Natl Acad Sci U S A, Cilt. 110(49), s. 19701-6. DOI: 10.1073/pnas.1316792110.
  • [28] Mark A. Lukowski, A.S.D., Fei Meng, Audrey Forticaux, Linsen Li, and Song Jin. 2013. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets, Journal of American Chemical Society, Cilt. 135, s. 10274– 10277. DOI: 10.1021/ja404523s.
  • [29] Shirodkar, S.N. and U.V. Waghmare. 2014. Emergence of ferroelectricity at a metalsemiconductor transition in a 1T monolayer of MoS2, Phys Rev Lett, Cilt. 112(15), s. 157601. DOI: 10.1103/PhysRevLett.112.157601.
  • [30] Li, X. and H. Zhu. 2015. Two-dimensional MoS2: Properties, preparation, and applications, Journal of Materiomics, Cilt. 1(1), s. 33-44. DOI: 10.1016/j.jmat.2015.03.003.
  • [31] Wang, D., W. Ju, T. Li, Q. Zhou, Z. Gao, Y. Zhang, and H. Li. 2019. Electronic and magnetic properties of MoS2 monolayers with antisite defects, Journal of Physics and Chemistry of Solids, Cilt. 131, s. 119- 124. DOI: 10.1016/j.jpcs.2019.03.028.
  • [32] Radisavljevic, B., A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. 2011. Single-layer MoS2 transistors, Nat Nanotechnol, Cilt. 6(3), s. 147-50. DOI: 10.1038/nnano.2010.279.
  • [33] Zhang, X., B. Luster, A. Church, C. Muratore, A.A. Voevodin, P. Kohli, S. Aouadi, and S. Talapatra. 2009. Carbon nanotube-MoS2 composites as solid lubricants, ACS Appl Mater Interfaces, Cilt. 1(3), s. 735-9. DOI: 10.1021/am800240e.
  • [34] Cheng, R., D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan. 2014. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction pn diodes, Nano Lett, Cilt. 14(10), s. 5590-7. DOI: 10.1021/nl502075n.
  • [35] Geim, A.K. and I.V. Grigorieva. 2013. Van der Waals heterostructures, Nature, Cilt. 499(7459), s. 419-25. DOI: 10.1038/nature12385.
  • [36] Kim, H.-U., M. Kim, Y. Jin, Y. Hyeon, K.S. Kim, B.-S. An, C.-W. Yang, V. Kanade, J.-Y. Moon, G.Y. Yeom, D. Whang, J.-H. Lee, and T. Kim. 2019. Low-temperature wafer-scale growth of MoS2-graphene heterostructures, Applied Surface Science, Cilt. 470, s. 129-134. DOI: 10.1016/j.apsusc.2018.11.126.
  • [37] Wang, H., F. Liu, W. Fu, Z. Fang, W. Zhou, and Z. Liu. 2014. Two-dimensional heterostructures: fabrication, characterization, and application, Nanoscale, Cilt. 6(21), s. 12250-72. DOI: 10.1039/c4nr03435j.
  • [38] Wu, M., X. Yao, Y. Hao, H. Dong, Y. Cheng, H. Liu, F. Lu, W. Wang, K. Cho, and W.-H. Wang. 2018. Electronic structures, magnetic properties and band alignments of 3d transition metal atoms doped monolayer MoS2, Physics Letters A, Cilt. 382(2-3), s. 111-115. DOI: 10.1016/j.physleta.2017.10.024.
  • [39] Huo, N., Y. Yang, and J. Li. 2017. Optoelectronics based on 2D TMDs and heterostructures, Journal of Semiconductors, Cilt. 38(3), s. 031002. DOI: 10.1088/1674-4926/38/3/031002.
  • [40] Li, H., J. Wu, Z. Yin, and H. Zhang. 2014. Preparation and applications of mechanically exfoliated singlelayer and multilayer MoS(2) and WSe(2) nanosheets, Acc Chem Res, Cilt. 47(4), s. 1067-75. DOI: 10.1021/ar4002312.
  • [41] Gomes, F.O.V., A. Pokle, M. Marinkovic, T. Balster, R. Anselmann, V. Nicolosi, and V. Wagner. 2019. High mobility solution processed MoS2 thin film transistors, Solid-State Electronics, Cilt. 158, s. 75- 84. DOI: 10.1016/j.sse.2019.05.011.
  • [42] Hai Li, Z.Y., Qiyuan He, Hong Li, Xiao Huang, Gang Lu, Derrick Wen Hui Fam, Alfred Iing Yoong Tok, Qing Zhang and Hua Zhan. 2012. Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature, Nano-micro Small, Cilt. 8, s. 63-67. DOI: 10.1002/smll.201101016.
  • [43] Woods, J.M., Y. Jung, Y. Xie, W. Liu, Y. Liu, H. Wang, and J.J. Cha. 2016. One-Step Synthesis of MoS(2)/WS(2) Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films, ACS Nano, Cilt. 10(2), s. 2004- 9. DOI: 10.1021/acsnano.5b06126.
  • [44] Kamila, S., B. Mohanty, A.K. Samantara, P. Guha, A. Ghosh, B. Jena, P.V. Satyam, B.K. Mishra, and B.K. Jena. 2017. Highly Active 2D Layered MoS 2 -rGO Hybrids for Energy Conversion and Storage Applications, Sci Rep, Cilt. 7(1), s. 8378. DOI: 10.1038/s41598-017-08677-5.
  • [45] Pazhamalai, P., K. Krishnamoorthy, S. Manoharan, and S.J. Kim. 2019. High energy symmetric supercapacitor based on mechanically delaminated few-layered MoS2 sheets in organic electrolyte, Journal of Alloys and Compounds, Cilt. 771, s. 803- 809. DOI: 10.1016/j.jallcom.2018.08.203.
  • [46] Zhu, D., H. Shu, F. Jiang, D. Lv, V. Asokan, O. Omar, J. Yuan, Z. Zhang, and C. Jin. 2017. Capture the growth kinetics of CVD growth of two-dimensional MoS2, npj 2D Materials and Applications, Cilt. 1(1), s. DOI: 10.1038/s41699-017-0010-x.
  • [47] Kim, H.-S., M.D. Kumar, J. Kim, and D. Lim. 2018. Vertical growth of MoS2 layers by sputtering method for efficient photoelectric application, Sensors and Actuators A: Physical, Cilt. 269, s. 355-362. DOI: 10.1016/j.sna.2017.11.050.
  • [48] Fu, D., X. Zhao, Y.Y. Zhang, L. Li, H. Xu, A.R. Jang, S.I. Yoon, P. Song, S.M. Poh, T. Ren, Z. Ding, W. Fu, T.J. Shin, H.S. Shin, S.T. Pantelides, W. Zhou, and K.P. Loh. 2017. Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride, J Am Chem Soc, Cilt. 139(27), s. 9392-9400. DOI: 10.1021/jacs.7b05131.
  • [49] Miao, H., X. Hu, Q. Sun, Y. Hao, H. Wu, D. Zhang, J. Bai, E. Liu, J. Fan, and X. Hou. 2016. Hydrothermal synthesis of MoS2 nanosheets films: Microstructure and formation mechanism research, Materials Letters, Cilt. 166, s. 121-124. DOI: 10.1016/j.matlet.2015.12.010.
  • [50] Richard I. Walton, A.J.D.a.S.J.H. 1998. In Situ Investigation of the Thermal Decomposition of Ammonium Tetrathiomolybdate Using Combined Time-Resolved X-ray Absorption Spectroscopy and Xray Diffraction, Chemistry of Materials, Cilt. 10, s. 3737-3745. DOI: 10.1021/cm980716h.
  • [51] Qi, F., P. Li, Y. Chen, B. Zheng, X. Liu, F. Lan, Z. Lai, Y. Xu, J. Liu, J. Zhou, J. He, and W. Zhang. 2015. Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method, Vacuum, Cilt. 119, s. 204-208. DOI: 10.1016/j.vacuum.2015.05.023.
  • [52] Hu, H., C. Deng, J. Xu, K. Zhang, and M. Sun. 2015. Metastableh-MoO3and stableαMoO3microstructures: controllable synthesis, growth mechanism and their enhanced photocatalytic activity, Journal of Experimental Nanoscience, Cilt. 10(17), s. 1336-1346. DOI: 10.1080/17458080.2015.1012654.
  • [53] Krishna, K.H., O.M. Hussain, and C. Guillen. 2008. Photo- and Electrochromic Properties of Activated Reactive EvaporatedMoO3Thin Films Grown on Flexible Substrates, Research Letters in Nanotechnology, Cilt. 2008, s. 1-5. DOI: 10.1155/2008/217510.
  • [54] Dam, S., A. Thakur, A. G, and S. Hussain. 2019. Synthesis and characterisation of MoS2 thin films by electron beam evaporation, Thin Solid Films, Cilt. 681, s. 78-85. DOI: 10.1016/j.tsf.2019.04.041.
  • [55] Chang, K. and W. Chen. 2011. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries, Chem Commun (Camb), Cilt. 47(14), s. 4252-4. DOI: 10.1039/c1cc10631g.
  • [56] Cao, H., Z. Bai, Y. Li, Z. Xiao, X. Zhang, and G. Li. 2020. Solvothermal Synthesis of Defect-Rich Mixed 1T-2H MoS2 Nanoflowers for Enhanced Hydrodesulfurization, ACS Sustainable Chemistry & Engineering, Cilt. 8(19), s. 7343-7352. DOI: 10.1021/acssuschemeng.0c00736.
  • [57] Mishra, S., P.K. Maurya, and A.K. Mishra. 2020. 2H– MoS2 nanoflowers based high energy density solid state supercapacitor, Materials Chemistry and Physics, Cilt. 255, s. 123551. DOI: 10.1016/j.matchemphys.2020.123551.
  • [58] Qian, S., R. Yang, F. Lan, Y. Xu, K. Sun, S. Zhang, Y. Zhang, and Z. Dong. 2019. Growth of continuous MoS2 film with large grain size by chemical vapor deposition, Materials Science in Semiconductor Processing, Cilt. 93, s. 317-323. DOI: 10.1016/j.mssp.2019.01.007.
  • [59] Song, T.-s., L. Fu, N. Wan, J. Wu, and J. Xie. 2020. Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2, Journal of CO2 Utilization, Cilt. 41, s. 101231. DOI: 10.1016/j.jcou.2020.101231.
APA Kıvrak B, Akyol M (2022). Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. , 81 - 90. 10.21205/deufmd.2022247009
Chicago Kıvrak Burak,Akyol Mustafa Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. (2022): 81 - 90. 10.21205/deufmd.2022247009
MLA Kıvrak Burak,Akyol Mustafa Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. , 2022, ss.81 - 90. 10.21205/deufmd.2022247009
AMA Kıvrak B,Akyol M Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. . 2022; 81 - 90. 10.21205/deufmd.2022247009
Vancouver Kıvrak B,Akyol M Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. . 2022; 81 - 90. 10.21205/deufmd.2022247009
IEEE Kıvrak B,Akyol M "Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi." , ss.81 - 90, 2022. 10.21205/deufmd.2022247009
ISNAD Kıvrak, Burak - Akyol, Mustafa. "Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi". (2022), 81-90. https://doi.org/10.21205/deufmd.2022247009
APA Kıvrak B, Akyol M (2022). Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 81 - 90. 10.21205/deufmd.2022247009
Chicago Kıvrak Burak,Akyol Mustafa Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24, no.70 (2022): 81 - 90. 10.21205/deufmd.2022247009
MLA Kıvrak Burak,Akyol Mustafa Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol.24, no.70, 2022, ss.81 - 90. 10.21205/deufmd.2022247009
AMA Kıvrak B,Akyol M Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2022; 24(70): 81 - 90. 10.21205/deufmd.2022247009
Vancouver Kıvrak B,Akyol M Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2022; 24(70): 81 - 90. 10.21205/deufmd.2022247009
IEEE Kıvrak B,Akyol M "Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi." Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24, ss.81 - 90, 2022. 10.21205/deufmd.2022247009
ISNAD Kıvrak, Burak - Akyol, Mustafa. "Çözücü ve Isıl İşlem Sürecinin MoS2 İnce Filmlerinin Yapısal Özelliklerine Etkisinin İncelenmesi". Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/70 (2022), 81-90. https://doi.org/10.21205/deufmd.2022247009