Yıl: 2021 Cilt: 9 Sayı: 3 Sayfa Aralığı: 276 - 283 Metin Dili: Türkçe DOI: 10.4274/nkmj.galenos.2021.32032 İndeks Tarihi: 01-06-2022

Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması

Öz:
Amaç: Akut yorucu egzersiz kardiyovasküler sistem (KVS) için ilave bir yük oluşturmaktadır. Melatonin ise KVS üzerine koruyucu etkileri olduğu bilinen bir hormondur. Bu çalışma ile akut yorucu egzersiz uygulanan sıçanlarda KVS’de meydana gelen değişikliklerin elektrokardiyografi (EKG) verileri üzerinden değerlendirilmesi ve melatoninin koruyucu etkilerinin araştırılması amaçlandı. Gereç ve Yöntem: Çalışma 3-5 aylık 28 adet Wistar Albino sıçan üzerinde yürütüldü ve 4 ayrı grup oluşturuldu. Kontrol grubuna sadece taşıyıcı çözelti uygulandı ve herhangi bir egzersiz yapılmadı. Egzersiz, egzersiz+melatonin (egzersizden önce 10 mg/kg intraperitonal melatonin enjeksiyonu) ve egzersiz+melatonin+luzindole (egzersizden önce intraperitonal 0,4 mg/kg dozda luzindol ve 10 mg/kg melatonin enjeksiyonu) grupları 5-25 m/ dk hızda koşu bandında yoruluncaya kadar koşturuldu. Egzersiz sonrasında EKG verileri kaydedildi. Bulgular: EKG verilerine göre, her iki egzersiz grubunda kalp hızının anlamlı düzeyde arttığı belirlendi. Melatonin uygulamasının egzersiz grubunda anlamlı düzeyde artan QT ve QTc süresi uzamalarını kısalttığı, luzindol verilen grupta ise melatoninin bu etkisinin ortaya çıkmadığı belirlendi. Melatonin aynı zamanda egzersizle artan kortikosteron seviyelerini reseptör bağımsız bir şekilde azalttı. Egzersizle artan akyuvar sayısı ve nötrofil düzeyleri melatonin grubunda kontrol grubuna yakın düzeyde belirlendi. Sonuç: Bu sonuçlar melatoninin, egzersizde ortaya çıkabilecek istenmeyen etkileri azaltıcı ve egzersiz kalitesini artırıcı bir ajan olarak kullanılabileceğini göstermektedir
Anahtar Kelime:

The Investigation of the Effects of Melatonin on Electrocardiografic Findings in Rats Undergoing Acute Intense Exercise

Öz:
Aim: Acute intense exercise causes an additional strain on cardiovascular system. Melatonin has been known as a hormone with cardiovascular protective effects. The aim of this study is to investigate the protective effects of melatonin on cardiovascular changes in rats undergoing acute intense exercise, considering electrocardiogram (ECG) results. Materials and Methods: The 3-5-month-old 28 Wistar albino rats were used in this study and they were divided into 4 groups. The vehicle injection was applied in the control group without any exercise procedure. The groups of exercise, exercise+melatonin (intraperitoneal injection of melatonin at the dose of 10 mg/kg before exercise) and exercise+melatonin+luzindole (intraperitoneal injection of luzindole at the dose of 0.4 mg/kg and melatonin at the dose of 10 mg/kg before exercise) were run on treadmill until they were tired. ECG recording was performed at the end of the exercise. Results: A significant increase in heart rate was observed in both exercise groups. The decreasing effect of melatonin on QT and QTc prolongation in the exercise group was reported; however, this effect did not occur in the luzindol administrated group. Melatonin also decreased corticositerone levels, which increased with exercise, independent of receptor. White blood cell and neutrophile counts of the melatonin administrated group were observed to be close to that of the control group.Conclusion: These results indicate that melatonin can be used as an agent that may decrease unfavorable effects of exercise and improve the quality of exercise.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Cruzat VF, Rogero MM, Borges MC, Tirapegui J. Current aspects about oxidative stress, physical exercise and supplementation. Rev Bras Med Do Esporte. 2007;13:304-10.
  • 2. Huang KC, Wu WT, Yang FL, Chiu YH, Peng TC, Hsu BG, et al. Effects of freshwater clam extract supplementation on time to exhaustion, muscle damage, pro/anti-inflammatory cytokines, and liver injury in rats after exhaustive exercise. Molecules. 2013;18:3825-38.
  • 3. Lin X, Jiang C, Luo Z, Qu S. Protective effect of erythropoietin on renal injury induced in rats by four weeks of exhaustive exercise. BMC Nephrol. 2013;14:130.
  • 4. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NA, et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115:2358-68.
  • 5. Cheung CC, Laksman ZW, Mellor G, Sanatani S, Krahn AD. Exercise and Inherited Arrhythmias. Can J Cardiol. 2016;32:452-8.
  • 6. van de Loo A, Arendts W, Hohnloser SH. Variability of QT dispersion measurements in the surface electrocardiogram in patients with acute myocardial infarction and in normal subjects. Am J Cardiol. 1994;74:1113-8.
  • 7. Javidanpour S, Dianat M, Aliakbari FR, Sarkaki A. The effects of olive leaf extract and 28 days forced treadmill exercise on electrocardiographic parameters in rats. J Res Med Sci. 2018;23:108.
  • 8. Brainard, GC, Gaddyf L, Ruberg FM. Ocular mechanisms that regulate the human pineal gland. In: Advances in Pineal Research, M. Mdler. P. Pevet, eds, 1994.Vol. 8. John Libby. p.415-32.
  • 9. Reppert SM, Weaver DR, Rivkees SA, Stopa EG. Putative melatonin receptors in a human biological clock. Science. 1988;242:78-81.
  • 10. Browning C, Beresford I, Fraser N, Giles H. Pharmacological characterization of human recombinant melatonin mt(1) and MT(2) receptors. Br J Pharmacol. 2000;129:877-86.
  • 11. Dubocovich ML. Luzindole (N-0774): a novel melatonin receptor antagonist. J Pharmacol Exp Ther. 1988;246:902-10.
  • 12. Veneroso C, Tuñón MJ, González-Gallego J, Collado PS. Melatonin reduces cardiac inflammatory injury induced by acute exercise. J Pineal Res. 2009;47:184-91.
  • 13. Ovali MA, Uzun M. The effects of melatonin administration on KCNQ and KCNH2 gene expressions and QTc interval in pinealectomised rats. Cell Mol Biol (Noisy-le-grand). 2017;63:45-50.
  • 14. Cakan P, Ozgocer T, Yildiz S. Development and validation of a corticosterone enzyme immunoassay for rat plasma. Acta Physiologica. 2016;217(Suppl 708):76.
  • 15. Leonardo-Mendonça RC, Martinez-Nicolas A, de Teresa Galván C, Ocaña- Wilhelmi J, Rusanova I, Guerra-Hernández E, et al. The benefits of four weeks of melatonin treatment on circadian patterns in resistance-trained athletes. Chronobiol Int. 2015;32:1125-34.
  • 16. Escames G, Ozturk G, Baño-Otálora B, Pozo MJ, Madrid JA, Reiter RJ, et al. Exercise and melatonin in humans: reciprocal benefits. J Pineal Res. 2012;52:1-11.
  • 17. Ahmadiasl N, Najafipour H, Soufi FG, Jafari A. Effect of short- and long- term strength exercise on cardiac oxidative stress and performance in rat. J Physiol Biochem. 2012;68:121-8.
  • 18. Atalay M, Laaksonen DE. Diabetes, oxidative stress and physical exercise. J Sports Sci Med. 2002;1:1-14.
  • 19. Michailidis Y, Jamurtas AZ, Nikolaidis MG, Fatouros IG, Koutedakis Y, Papassotiriou I, et al. Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc. 2007;39:1107-13.
  • 20. Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243-76.
  • 21. Gong S, Miao YL, Jiao GZ, Sun MJ, Li H, Lin J, et al. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS One. 2015;10:e0117503.
  • 22. Hill MN, Brotto LA, Lee TT, Gorzalka BB. Corticosterone attenuates the antidepressant-like effects elicited by melatonin in the forced swim test in both male and female rats. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:905-11.
  • 23. Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, et al. International Recommendations for Electrocardiographic Interpretation in Athletes. J Am Coll Cardiol. 2017;69:1057-75.
  • 24. Lakdawala NK, Thune JJ, Maron BJ, Cirino AL, Havndrup O, Bundgaard H, et al. Electrocardiographic features of sarcomere mutation carriers with and without clinically overt hypertrophic cardiomyopathy. Am J Cardiol. 2011;108:1606-13.
  • 25. Tikkanen JT, Junttila MJ, Anttonen O, Aro AL, Luttinen S, Kerola T, et al. Early repolarization: electrocardiographic phenotypes associated with favorable long-term outcome. Circulation. 2011;123:2666-73.
  • 26. Haghjoo M, Mohammadzadeh S, Taherpour M, Faghfurian B, Fazelifar AF, Alizadeh A, et al. ST-segment depression as a risk factor in hypertrophic cardiomyopathy. Europace. 2009;11:643-9.
  • 27. Le VV, Wheeler MT, Mandic S, Dewey F, Fonda H, Perez M, et al. Addition of the electrocardiogram to the preparticipation examination of college athletes. Clin J Sport Med. 2010;20:98-105.
  • 28. Rowin EJ, Maron BJ, Appelbaum E, Link MS, Gibson CM, Lesser JR, et al. Significance of false negative electrocardiograms in preparticipation screening of athletes for hypertrophic cardiomyopathy. Am J Cardiol. 2012;110:1027-32.
  • 29. Yu PN, Bruce RA, Lovejoy FW, Pearson R. Observations on the Change of Ventricular Systole (Qt Interval) During Exercise. J Clin Invest. 1950;29:279- 89.
  • 30. Indik JH, Pearson EC, Fried K, Woosley RL. Bazett and Fridericia QT correction formulas interfere with measurement of drug-induced changes in QT interval. Heart Rhythm. 2006;3:1003-7.
  • 31. Omiya K, Sekizuka H, Kida K, Suzuki K, Akashi YJ, Ohba H, et al. Influence of gender and types of sports training on QT variables in young elite athletes. Eur J Sport Sci. 2014;14(Suppl 1):S32-8.
  • 32. Cappato R, Alboni P, Pedroni P, Gilli G, Antonioli GE. Sympathetic and vagal influences on rate-dependent changes of QT interval in healthy subjects. Am J Cardiol. 1991;68:1188-93.
  • 33. Chinushi M, Sato A, Iijima K, Suzuki K, Hiroshi F, Izumi D, et al. Exercise- related QT interval shortening with a peaked T wave in a healthy boy with a family history of sudden cardiac death. Pacing Clin Electrophysiol. 2012;35:e239-42.
  • 34. Berger WR, Gow RM, Kamberi S, Cheung M, Smith KR, Davis AM. The QT and corrected QT interval in recovery after exercise in children. Circ Arrhythm Electrophysiol. 2011;4:448-55.
  • 35. Ogedengbe JO, Adelaiye AB, Kolawole OV. Effects of exercise on PR intervals, QRS durations and QTC intervals in male and female students of University of Abuja. J Pak Med Assoc. 2012;62:273-5.
APA uzun m, ÇAKAN P (2021). Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. , 276 - 283. 10.4274/nkmj.galenos.2021.32032
Chicago uzun metehan,ÇAKAN PINAR Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. (2021): 276 - 283. 10.4274/nkmj.galenos.2021.32032
MLA uzun metehan,ÇAKAN PINAR Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. , 2021, ss.276 - 283. 10.4274/nkmj.galenos.2021.32032
AMA uzun m,ÇAKAN P Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. . 2021; 276 - 283. 10.4274/nkmj.galenos.2021.32032
Vancouver uzun m,ÇAKAN P Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. . 2021; 276 - 283. 10.4274/nkmj.galenos.2021.32032
IEEE uzun m,ÇAKAN P "Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması." , ss.276 - 283, 2021. 10.4274/nkmj.galenos.2021.32032
ISNAD uzun, metehan - ÇAKAN, PINAR. "Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması". (2021), 276-283. https://doi.org/10.4274/nkmj.galenos.2021.32032
APA uzun m, ÇAKAN P (2021). Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. Namık Kemal Tıp Dergisi, 9(3), 276 - 283. 10.4274/nkmj.galenos.2021.32032
Chicago uzun metehan,ÇAKAN PINAR Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. Namık Kemal Tıp Dergisi 9, no.3 (2021): 276 - 283. 10.4274/nkmj.galenos.2021.32032
MLA uzun metehan,ÇAKAN PINAR Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. Namık Kemal Tıp Dergisi, vol.9, no.3, 2021, ss.276 - 283. 10.4274/nkmj.galenos.2021.32032
AMA uzun m,ÇAKAN P Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. Namık Kemal Tıp Dergisi. 2021; 9(3): 276 - 283. 10.4274/nkmj.galenos.2021.32032
Vancouver uzun m,ÇAKAN P Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması. Namık Kemal Tıp Dergisi. 2021; 9(3): 276 - 283. 10.4274/nkmj.galenos.2021.32032
IEEE uzun m,ÇAKAN P "Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması." Namık Kemal Tıp Dergisi, 9, ss.276 - 283, 2021. 10.4274/nkmj.galenos.2021.32032
ISNAD uzun, metehan - ÇAKAN, PINAR. "Akut Yorucu Egzersiz Yaptırılan Sıçanlarda Melatoninin Elektrokardiyografik Veriler Üzerindeki Etkilerinin Araştırılması". Namık Kemal Tıp Dergisi 9/3 (2021), 276-283. https://doi.org/10.4274/nkmj.galenos.2021.32032