Yıl: 2021 Cilt: 15 Sayı: 1 Sayfa Aralığı: 66 - 63 Metin Dili: Türkçe DOI: 10.5578/ced.20219914 İndeks Tarihi: 02-06-2022

COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi

Öz:
-
Anahtar Kelime:

Nature and Duration of Protective Antibodies Developed After COVID-19 Infection

Öz:
-
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Diğer Erişim Türü: Erişime Açık
0
0
0
  • 1. Caliendo AM, Hanson KE, Hirsch MS, Bloom A. Coronavirus disease 2019 (COVID-19): diagnosis. 2021. Available from: https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-diagnosis. Accessed date: 04 February 2021. [CrossRef]
  • 2. Hansen KE, Caliendo AM, Arias CA, Englund JA, Hayden MK, Lee MJ, et al. Infectious diseases society of america guidelines on the diagnosis of COVID-19: serologic testing. 2020. Available from: https://www.idsociety.org/practice-guideline/covid-19-guideline-serology/. Accessed date: 21 January 2021. [CrossRef]
  • 3. McIntosh K, Hirsch MS, Bloom A. Coronavirus disease 2019 (COVID-19): Epidemiology, virology, and prevention. 2021. Available from: https:// www.uptodate.com/contents/coronavirus-disease-2019-covid-19-epidemiology-virology-and-prevention. Accessed date: 21 January 2021. [CrossRef]
  • 4. Lustig Y, Keler S, Kolodny R, Ben-Tal N, Atias-Varon D, Shlush E, et al. Potential antigenic cross-reactivity between SARS-CoV-2 and dengue viruses. Clin Infect Dis 2020;ciaa1207. [CrossRef]
  • 5. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181:1489- 501. [CrossRef]
  • 6. Mateus J, Grifoni A, Tarke A, Sidney J, Dan JM, Burger ZC, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020;370:89-94. [CrossRef]
  • 7. Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020;587:270-4. [CrossRef]
  • 8. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020;370:1339-43. [CrossRef]
  • 9. Centers for Disease Control and Prevention (CDC). Interim guidelines for COVID-19 antibody testing in clinical and public health settings. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/ lab/resources/antibody-tests-guidelines.html?deliveryName=USCDC_2067-DM29085. Accessed date: 29 January 2021. [CrossRef]
  • 10. Bastos ML, Tavaziva G, Abidi SK, Campbell JR, Haraoui LP, Johnston JC, et al. Diagnostic accuracy of serological testss for COVID-19: systematic review and meta-analysis. BMJ 2020;370:m2516. [CrossRef]
  • 11. Nivedhita G, Brundha MP. Eclia Test-Review. IJFMT 2020;14:5067-73. [CrossRef]
  • 12. Chang L, Zhao J, Guo F, Ji H, Zhang L, Jiang X, et al. Comparative evaluation and measure of Accuracy of ELISAs, CLIAs and ECLIAs for he detection of HIV infection among blood donors in China. Can J Infect Dis Med Microbiol 2020; 2164685. [CrossRef]
  • 13. Self WH, Tenforde MW, Stubblefield WB, Feldstein LR, Steingrub JS, Shapiro NI, et al. Decline in SARS-CoV-2 antibodies after mild infection among frontline health care personnel in a multistate hospital network-12 states. MMWR Morb Mortal Wkly Rep 2020;69:1762. [CrossRef]
  • 14. World Health Organization (WHO). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-2019). Available from: http:// www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed date: 21 January 2021. [CrossRef]
  • 15. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis 2020; 71:778-85. [CrossRef]
  • 16. Boonyaratanakornkit J, Morishima C, Selke S, Zamora D, McGuffin S, Shapiro AE, et al. Clinical, laboratory and temporal predictors of neutralizing antibodies to SARS-Cov-2 after COVID-19. J Clin Invest 2021;131(3):e144930. [CrossRef]
  • 17. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021; 591:639-44. [CrossRef]
  • 18. To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020;20:565-74. [CrossRef]
  • 19. Kovac M, Risch L, Thiel S, Weber M, Grossmann K, Wohlwend N, et al. EDTA-anticoagulated whole Blood for SARS-CoV-2 antibody testing by Electrochemiluminescence Immunoassay (ECLIA) and Enzyme-Linked Immunosorbent Assay (ELISA). Diagnostics (Basel) 2020;10:593. [CrossRef]
  • 20. Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2020;6:CD013652. [CrossRef]
  • 21. Wang Y, Zhang L, Sang L, Ye F, Ruan S, Zhong B, et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest 2020;130:5235-44. [CrossRef]
  • 22. U.S Food and Drug Administration (FDA). Elecsys Anti-SARS-CoV-2. Available from: https://www.fda.gov/media/137605/download. Accessed date: 16 February 2021. [CrossRef]
  • 23. U.S Food and Drug Administration (FDA). Elecsys Anti-SARS-CoV-2. Available from: https://diagnostics.roche.com/tr/tr/products/params/elecsys-anti-sars-cov-2-s.html. Accessed date: 03 February 2021. [CrossRef]
  • 24. U.S Food and Drug Administration (FDA). Euroimmun Anti-SARS-CoV-2 ELISA (IgG) Instruction for use. Available from: https://www.fda.gov/ media/137609/download. Accessed date: 21 March 2021. [CrossRef]
  • 25. U.S Food and Drug Administration (FDA). Euroimmun Anti-SARSCoV-2 QuantiVac ELISA (IgG). Available from: https://www.coronavirus-diagnostics.com/documents/Indications/Infections/Coronavirus/ EI_2606_D_UK_E.pdf. Accessed date: 23 March 2021. [CrossRef]
  • 26. To KK, Hung IF, Ip JD, Chu AW, Chan W, Tam AR, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis 2020. Epub 2020 Aug 26. [CrossRef]
  • 27. Tillett RL, Sevinsky JR, Hartley PD, Kerwin H, Crawford N, Gorzalski A, et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis 2021;21:52-8. [CrossRef]
  • 28. Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020;26:1200-4. [CrossRef]
  • 29. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis 2020;71:2027-34. [CrossRef]
  • 30. Chen X, Pan Z, Yue S, Yu F, Zhang J, Yang Y, et al. Disease severity dictates SARS-CoV-2-specific netralizing antibody responses in COVID-19. Nature 2020;5(1):80. [CrossRef]
  • 31. Wang X, Guo X, Xin Q, Pan Y, Hu Y, Li J, et al. Neutralizing antibodies responses to SARS-CoV-2 in COVID-19 inpatients and convalescent patients. Clin Infect Dis 2020; 71(10):2688-94. [CrossRef]
  • 32. Rijkers G, Murk JL, Wintermans B, Van Looy B, van den Berge M, Veenemans J, et al. Differences in antibody kinetics and functionality between severe and mild severe acute respiratory syndrome Coronavirus 2 infections. J Infect Dis 2020;222:1265-9. [CrossRef]
  • 33. Lynch KL, Whitman JD, Lacanienta NP, Beckerdite EW, Kastner SA, Shy BR, et al. Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clin Infect Dis 2021;72(2):301-8. [CrossRef]
  • 34. Cao WC, Liu W, Zhang PH, Zhang F, Richardus JH. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med 2007;357:1162-3. [CrossRef]
  • 35. Choe PG, Perera RAPM, Park WB, Song KH, Bang JH, Kim ES, et al. MERSCoV antibody responses 1 year after symptom onset, South Korea, 2015. Emerg Infect Dis 2017;23:1079-84. [CrossRef]
  • 36. Wu LP, Wang NC, Chang YH, Tian XY, Na DY, Zhan LY, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis 2007;13:1562-4. [CrossRef]
  • 37. Huang AT, Carreras BG, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, et al. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun 2020;11:4704. [CrossRef]
  • 38. U.S Food and Drug Administration (FDA). Bowman NB. Convalescent Plasma EUA Letter of Authorization March 9, 2021. Available from: https://www.fda.gov/media/141477/download. Accessed date: 22 March 2021. [CrossRef]
  • 39. Leidi A, Koegler F, Dumont R, Dubos R, Zaballa ME, Piumatti G, et al. Risk of reinfection after seroconversion to SARS-CoV-2: a population-based propensity-score matched cohort study. MedRxiv 2021. [CrossRef]
APA Turan C, Hacimustafaoglu M (2021). COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. , 66 - 63. 10.5578/ced.20219914
Chicago Turan Cansu,Hacimustafaoglu Mustafa COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. (2021): 66 - 63. 10.5578/ced.20219914
MLA Turan Cansu,Hacimustafaoglu Mustafa COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. , 2021, ss.66 - 63. 10.5578/ced.20219914
AMA Turan C,Hacimustafaoglu M COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. . 2021; 66 - 63. 10.5578/ced.20219914
Vancouver Turan C,Hacimustafaoglu M COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. . 2021; 66 - 63. 10.5578/ced.20219914
IEEE Turan C,Hacimustafaoglu M "COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi." , ss.66 - 63, 2021. 10.5578/ced.20219914
ISNAD Turan, Cansu - Hacimustafaoglu, Mustafa. "COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi". (2021), 66-63. https://doi.org/10.5578/ced.20219914
APA Turan C, Hacimustafaoglu M (2021). COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. Çocuk Enfeksiyon Dergisi, 15(1), 66 - 63. 10.5578/ced.20219914
Chicago Turan Cansu,Hacimustafaoglu Mustafa COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. Çocuk Enfeksiyon Dergisi 15, no.1 (2021): 66 - 63. 10.5578/ced.20219914
MLA Turan Cansu,Hacimustafaoglu Mustafa COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. Çocuk Enfeksiyon Dergisi, vol.15, no.1, 2021, ss.66 - 63. 10.5578/ced.20219914
AMA Turan C,Hacimustafaoglu M COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. Çocuk Enfeksiyon Dergisi. 2021; 15(1): 66 - 63. 10.5578/ced.20219914
Vancouver Turan C,Hacimustafaoglu M COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi. Çocuk Enfeksiyon Dergisi. 2021; 15(1): 66 - 63. 10.5578/ced.20219914
IEEE Turan C,Hacimustafaoglu M "COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi." Çocuk Enfeksiyon Dergisi, 15, ss.66 - 63, 2021. 10.5578/ced.20219914
ISNAD Turan, Cansu - Hacimustafaoglu, Mustafa. "COVID-19 Enfeksiyonu Sonrası Gelişen Antikorların Niteliği ve Koruyuculuk Süresi". Çocuk Enfeksiyon Dergisi 15/1 (2021), 66-63. https://doi.org/10.5578/ced.20219914