Yıl: 2021 Cilt: 45 Sayı: 6 Sayfa Aralığı: 390 - 399 Metin Dili: İngilizce DOI: 10.55730/1300-0101.1003 İndeks Tarihi: 03-06-2022

Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules

Öz:
: LHCb collaboration has recently announced the observation of a doubly charmed tetraquark T + ccu¯d¯ state with spin parity J P = 1+ . This exotic state can be explained as a molecular state with small binding energy. According to conventional quark model, both D+D0∗ and (D0D+∗ ) multiquark states are expected to have the same mass and flavor in the exact SU(3) symmetry. However, since the quark masses are different, SU(3)(SU(2)) symmetry is violated; hence, the mass and flavor eigenstates do not coincide. The mass eigenstates can be represented as a linear combination of the flavor eigenstates, which is characterized by the mixing angle θ . In the present work, the possible mixing angles between the Tcc states are calculated. Moreover, the analyses are extended for all the possible tetraquarks scenarios with two heavy and two light quarks within the molecular picture although those states have not been observed yet. Our prediction on mixing angle between doubly charmed tetraquark states shows that SU(3) symmetry breaking is around 7% maximally
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M. Gell-Mann, “A Schematic Model of Baryons and Mesons”, Phys. Lett. 8 (1964) 214–215.
  • [2] G. Zweig, “An SU(3) model for strong interaction symmetry and its breaking. Version 1”, in book: Development in the Quark Theory of Hadrons 1 (1964), 22-101
  • [3] Belle Collaboration, S. K. Choi et al., “Observation of a resonance-like structure in the pi±ψ ′ mass distribution in exclusive B → Kπ±ψ ′ decays”, Phys. Rev. Lett. 100 (2008) 142001, [arXiv:0708.1790].
  • [4] BaBar Collaboration, B. Aubert et al., “Study of the B → J/ψK−π +π − decay and measurement of the B → X(3872)K− branching fraction”, Phys. Rev. D 71 (2005) 071103, [hep-ex/0406022].
  • [5] CDF Collaboration, D. Acosta et al., “Observation of the narrow state X(3872) → J/ψπ+π − in ¯pp collisions at √ s = 1.96 TeV”, Phys. Rev. Lett. 93 (2004) 072001, [hep-ex/0312021].
  • [6] D0 Collaboration, V. M. Abazov et al., “Observation and properties of the X(3872) decaying to J/ψπ+π − in pp¯ collisions at √ s = 1.96 TeV”, Phys. Rev. Lett. 93 (2004) 162002, [hep-ex/0405004].
  • [7] LHCb Collaboration, R. Aaij et al., “Observation of X(3872) production in pp collisions at √ s = 7 TeV”, Eur. Phys. J. C 72 (2012) 1972, [arXiv:1112.5310].
  • [8] CMS Collaboration, S. Chatrchyan et al., “Measurement of the X (3872) Production Cross Section Via Decays to J/ψπ+π − in pp collisions at √ s = 7 TeV”, JHEP 04 (2013) 154, [arXiv:1302.3968].
  • [9] Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics”, PTEP 2020 no. 8, (2020) 083C01.
  • [10] H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu, “A review of the open charm and open bottom systems”, Rept. Prog. Phys. 80 no. 7, (2017) 076201, [arXiv:1609.08928].
  • [11] A. Ali, J. S. Lange, and S. Stone, “Exotics: Heavy Pentaquarks and Tetraquarks”, Prog. Part. Nucl. Phys. 97 (2017) 123–198, [arXiv:1706.00610].
  • [12] S. Godfrey and S. L. Olsen, “The Exotic XYZ Charmonium-like Mesons”, Ann. Rev. Nucl. Part. Sci. 58 (2008) 51–73, [arXiv:0801.3867].
  • [13] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, “Diquark-antidiquarks with hidden or open charm and the nature of X(3872)”, Phys. Rev. D 71 (2005) 014028, [hep-ph/0412098].
  • [14] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, “A New look at scalar mesons”, Phys. Rev. Lett. 93 (2004) 212002, [hep-ph/0407017].
  • [15] R. L. Jaffe and F. Wilczek, “Diquarks and exotic spectroscopy”, Phys. Rev. Lett. 91 (2003) 232003, [hep-ph/0307341].
  • [16] E. S. Swanson, “The New heavy mesons: A Status report”, Phys. Rept. 429 (2006) 243–305, [hep-ph/0601110].
  • [17] M. Karliner and J. L. Rosner, “New Exotic Meson and Baryon Resonances from Doubly-Heavy Hadronic Molecules”, Phys. Rev. Lett. 115 no. 12, (2015) 122001, [arXiv:1506.06386].
  • [18] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, “Hadronic molecules”, Rev. Mod. Phys. 90 no. 1, (2018) 015004, [arXiv:1705.00141].
  • [19] S. Agaev, K. Azizi, and H. Sundu, “Four-quark exotic mesons”, Turk. J. Phys. 44 no. 2, (2020) 95–173, [arXiv:2004.12079].
  • [20] R. F. Lebed, R. E. Mitchell, and E. S. Swanson, “Heavy-Quark QCD Exotica”, Prog. Part. Nucl. Phys. 93 (2017) 143–194, [arXiv:1610.04528].
  • [21] A. Esposito, A. Pilloni, and A. D. Polosa, “Multiquark Resonances”, Phys. Rept. 668 (2017) 1–97, [arXiv:1611.07920].
  • [22] LHCb Collaboration, R. Aaij et al., “Observation of an exotic narrow doubly charmed tetraquark”, [arXiv:2109.01038].
  • [23] LHCb Collaboration, R. Aaij et al., “Study of the doubly charmed tetraquark T + cc ”, [arXiv:2109.01056].
  • [24] N. Li, Z.-F. Sun, X. Liu, and S.-L. Zhu, “Coupled-channel analysis of the possible D(∗)D(∗) , B (∗) B (∗) and D(∗)B (∗) molecular states”, Phys. Rev. D 88 no. 11, (2013) 114008, [arXiv:1211.5007].
  • [25] H. Xu, B. Wang, Z.-W. Liu, and X. Liu, “DD∗ potentials in chiral perturbation theory and possible molecular states”, Phys. Rev. D 99 no. 1, (2019) 014027, [arXiv:1708.06918].
  • [26] N. Li, Z.-F. Sun, X. Liu, and S.-L. Zhu, “Perfect DD∗ Molecular Prediction Matching the Tcc Observation at LHCb”, Chinese Physics Letters 38 no. 9, (Oct, 2021) 092001. [27] H. Ren, F. Wu, and R. Zhu, “Hadronic molecule interpretation of T + cc and its beauty-partners”, [arXiv:2109.02531].
  • [28] R. Chen, Q. Huang, X. Liu, and S.-L. Zhu, “Another doubly charmed molecular resonance T ′+ cc (3876) ”, [arXiv:2108.01911].
  • [29] T.-W. Wu, Y.-W. Pan, M.-Z. Liu, S.-Q. Luo, X. Liu, and L.-S. Geng, “Discovery of the doubly charmed T + cc state implies a triply charmed Hccc hexaquark state”, [arXiv:2108.00923].
  • [30] X. Chen, “Doubly heavy tetraquark states ccu¯ ¯d and bbu¯ ¯d”, [arXiv:2109.02828].
  • [31] Q.-N. Wang, W. Chen, and H.-X. Chen, “Exotic molecular states and tetraquark states with JP =0+, 1+, 2+”, Chin. Phys. C 45 no. 9, (2021) 093102, [arXiv:2011.10495].
  • [32] T. M. Aliev, A. Ozpineci, and V. Zamiralov, “Mixing Angle of Hadrons in QCD: A New View”, Phys. Rev. D 83 (2011) 016008, [arXiv:1007.0814].
  • [33] B. L. Ioffe and A. V. Smilga, “Nucleon Magnetic Moments and Magnetic Properties of Vacuum in QCD”, Nucl. Phys. B 232 (1984) 109–142.
  • [34] C. B. Chiu, J. Pasupathy, and S. L. Wilson, “The Gluon Field Contribution in QCD Sum Rules for the Magnetic Moments of the Nucleons”, Phys. Rev. D 36 (1987) 1451.
  • [35] Z.-W. Huang and J. Liu, “Analytic calculation of doubly heavy hadron spectral density in coordinate space”, [arXiv:1205.3026].
  • [36] T. M. Aliev, S. Bilmis, and M. Savci, “Determination of the spectroscopic parameters of beauty-partners of Tcc from QCD”, [arXiv:2111.01081].
  • [37] Particle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics”, Phys. Rev. D 98 (Aug, 2018) 030001.
  • [38] P. Gelhausen, A. Khodjamirian, A. A. Pivovarov, and D. Rosenthal, “Radial excitations of heavy-light mesons from QCD sum rules”, Eur. Phys. J. C 74 no. 8, (2014) 2979, [arXiv:1404.5891].
  • [39] B. L. Ioffe, “Calculation of Baryon Masses in Quantum Chromodynamics”, Nucl. Phys. B 188 (1981) 317–341. [Erratum: Nucl.Phys.B 191, 591–592 (1981)].
  • [40] B. L. Ioffe, “Condensates in quantum chromodynamics”, Phys. Atom. Nucl. 66 (2003) 30–43, [hep-ph/0207191].
  • [41] X.-m. Jin, M. Nielsen, and J. Pasupathy, “Calculation of ⟨p|uu¯ − ¯dd|p⟩ from QCD sum rule and the neutron - proton mass difference”, Phys. Rev. D 51 (1995) 3688–3696, [hep-ph/9405202].
APA BİLMİŞ S (2021). Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. , 390 - 399. 10.55730/1300-0101.1003
Chicago BİLMİŞ Selçuk Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. (2021): 390 - 399. 10.55730/1300-0101.1003
MLA BİLMİŞ Selçuk Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. , 2021, ss.390 - 399. 10.55730/1300-0101.1003
AMA BİLMİŞ S Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. . 2021; 390 - 399. 10.55730/1300-0101.1003
Vancouver BİLMİŞ S Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. . 2021; 390 - 399. 10.55730/1300-0101.1003
IEEE BİLMİŞ S "Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules." , ss.390 - 399, 2021. 10.55730/1300-0101.1003
ISNAD BİLMİŞ, Selçuk. "Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules". (2021), 390-399. https://doi.org/10.55730/1300-0101.1003
APA BİLMİŞ S (2021). Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. Turkish Journal of Physics, 45(6), 390 - 399. 10.55730/1300-0101.1003
Chicago BİLMİŞ Selçuk Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. Turkish Journal of Physics 45, no.6 (2021): 390 - 399. 10.55730/1300-0101.1003
MLA BİLMİŞ Selçuk Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. Turkish Journal of Physics, vol.45, no.6, 2021, ss.390 - 399. 10.55730/1300-0101.1003
AMA BİLMİŞ S Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. Turkish Journal of Physics. 2021; 45(6): 390 - 399. 10.55730/1300-0101.1003
Vancouver BİLMİŞ S Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules. Turkish Journal of Physics. 2021; 45(6): 390 - 399. 10.55730/1300-0101.1003
IEEE BİLMİŞ S "Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules." Turkish Journal of Physics, 45, ss.390 - 399, 2021. 10.55730/1300-0101.1003
ISNAD BİLMİŞ, Selçuk. "Mixing angles between the tetraquark states with two heavy quarks within QCDsum rules". Turkish Journal of Physics 45/6 (2021), 390-399. https://doi.org/10.55730/1300-0101.1003