Yıl: 2021 Cilt: 45 Sayı: 6 Sayfa Aralığı: 553 - 562 Metin Dili: İngilizce DOI: 10.3906/bot-2107-52 İndeks Tarihi: 05-06-2022

Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.

Öz:
In this study, Lythrum salicaria plant was tested in hydroponic culture to demonstrate its zinc accumulating capacity and tolerance to different zinc levels. Lythrum salicaria seedlings were grown in 10% Hoagland solution containing 0, 5, 10, 20, 30, 40, 50, 75, and 100 mg/L zinc, and 30 mg/L zinc with different pH levels (5, 6, and 7). Following this, the seedlings were harvested after 1st, 2nd, 4th and 7th days. Zinc caused significant decreases in the relative values of the mean root-shoot length and fresh weight of the plant (92 to 75%; 100 to 92%; 64.2 to 41.2%, respectively), and contents of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in the leaf (0.54 to 0.43; 0.16 to 0.11; 0.65 to 0.54; 0.097 to 0.080 mg/g fresh weight, respectively). There were significant increases in zinc accumulation parallel to zinc increase and pH in solution in plant tissues, zinc accumulation in roots (13,659.7 mg/kg dry weight) was higher than in shoots. Leaf protein content (0.31 to 0.49 mg/g fresh weight), and polyphenol oxidase (0.80 to 1.95 mg/g fresh weight), and carbonic anhydrase activities in the roots increased (6.7 to 17.87 mg/g fresh weight).These data indicate that Lythrum salicaria has a high ability to accumulate zinc, so that it may have the potential to be used in zinc remediation projects.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ackova DG (2018). Heavy metals and their general toxicity on plants. Plant Science Today 5 (1): 14-18. doi:10.14719/pst.2018.5.1.355
  • Ahmad SS, Reshi ZA, Shah MA, Rashid İ, Ara R et al. (2014). Phytoremediation potential of Phragmites australis in Hokersar wetland-aRamsar site of Kashmir Himalaya. International Journal of Phytoremediation 16: 1183-1191. doi: 10.1080/15226514.2013.821449
  • Aisien FA, Faleye O, Aisien ET (2010). Phytoremediation of heavy metals in aqueous solutions. Leonardo Journal of Sciences 17:37-46.
  • Akın B, Bingöl AN (2019). Heavy metal accumulation in wetland plants and water-sediment relationship in Köprüören-Kütahya. Journal of Limnology and Freshwater Fisheries Research 5 (2):76-82. doi: 10.17216/limnofish.416601
  • Al Chami Z, Amer N, Al Bitar L, Cavoski I (2015). Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. International Journal of Environment Science and Technology 12:3957-3970. doi: 10.1007/s13762-015-0823-0
  • Ali H, Khan E, Sajad MA (2013). Phytoremediation of heavy metalsconcepts and applications. Chemosphere 91:869-881. doi: 10.1016/j.chemosphere.2013.01.075
  • Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavaş I et al. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12:1927. doi: 10.3390/ su12051927
  • Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M et al. (2014). Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiology 164: 1191-1203. doi: 10.1104/pp.113.228593
  • Arnon DI(1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24 (1):1-15.
  • Bhat FA, Ganai BA, Uqab B (2017) .Carbonic anhydrase: mechanism, structure and importance in higher plants. Asian Journal of Plant Science & Research 7 (3):17-23.
  • Bidwell RGS (1979). Plant Physiology. 2nd ed. New York, USA: Macmillan Publ. Co. Inc.
  • Bingöl NA, Özmal F, Akın B (2017). Phytoremediation and biosorption potential of Lythrum salicaria L. for nickel removal from aqueous solutions. Polish Journal of Environmental Studies 26 (6): 2479- 2485. doi: 10.15244/pjoes/70628
  • Boeckx T, Webster R, Winters AL, Webb KJ, Gay A et al. (2015). Polyphenol oxidase-mediated protection against oxidative stress is not associated with enhanced photosynthetic efficiency. Annals of Botany 116 (4):529-540. doi: 10.1093/aob/mcv081
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry72:248-254.
  • Castillo-González J, Ojeda-Barrios D, Hernández-Rodríguez A, González-Franco AC, Robles-Hernández L et al. (2018). Zinc metalloenzymes in plants. Interciencia 43 (4):242-248.
  • Chandra R, Kang H (2016). Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Science and Technology 12 (2):55-61. doi: 10.1080/21580103.2015.1044024
  • Deng H, Yea ZH, Wong MH (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metalcontaminated sites in China. Environmental Pollution 132:29-40. doi: 10.1016/j.envpol.2004.03.030
  • Escudero-Almanza DJ, Ojeda-Barrios DL, Hernández-Rodríguez OA, Chávez ES, Ruíz-Anchondo T et al. (2012). Carbonic anhydrase and zinc in plant physiology. Chilean Journal of Agricultural Research 72 (1):140-146.
  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A et al. (2019). Heavy metal stress and responses in plants. International Journal of Environment Science and Technology16:1807-1828. doi: 10.1007/ s13762-019-02215-8
  • Hastorun S (2016). The mineral industry of Turkey. 2016 Minerals Yearbook, Turkey. USGS, pp. 47.1-47.15.
  • Hesami R, Salmi A, Ghaderian SM (2018). Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead-zinc mine, Iran. Environmental Science and Pollution Research 25: 8701-8714. doi: 10.1007/ s11356-017-1156-y
  • Hoagland DR, Arnon DI (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347:4-32.
  • Humadi SS, Istudor V (2009). Lythrum salicaria (purple loosestrife). Medicinal use, extraction and identification of its total phenolic compounds. Farmica 57 (2):192-200.
  • Jayasri MA, Suthindhiran K (2017). Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Applied Water Science 7: 1247-1253. doi: 10.1007/s13201-015-0376-x
  • Jennings PH, Duffus CM (1977). Effect of gibberellic acid on polyphenol oxidase activity in de-embryonated wheat and barley grains.New Phytologist 78 (2):383-389.
  • JMP (2005). JMP SAS Statistical Analysis System. Cary, North Carolina, USA.
  • Kaçar B, İnal A (2008). Bitki Analizleri. Ankara, Turkey: Nobel Yayın Dağıtım Ltd. Şti. (in Turkish).
  • Kocaçalışkan I (2004). Bitki Fizyolojisi.Ankara, Turkey: Bizim Büro Basımevi (in Turkish).
  • Kocaçalışkan I, Demir Y, Kabar K (1995). A study on polyphenol oxidase activity during seed germination. Phyton (Horn, Austria) 35 (1): 37-43.
  • Liu M, Lu S (2016). Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering. Frontiers in Plant Science 7: 1-18. doi: 10.3389/fpls.2016.01898
  • MacDonald RS (2000). The role of zinc in growth and cell proliferation. Journal of Nutrition 130 (5): 1500-1508. doi: 10.1093/ jn/130.5.1500S
  • Mal TK, Uveges JL, Turk KW(2002). Fluctuating asymmetry as an ecological indicator of heavy metal stress in Lythrum salicaria. Ecological Indicators 1:189-195. doi: 10.1016/S1470- 160X(02)00004-3
  • Mazumdar K, Das S (2015). Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environmental Science and Pollution Research 22: 701-710. doi: 10.1007/s11356-014-3377-7
  • Michalak A (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies 15 (4):523-530.
  • Mirshekali H, Hadi H, Amirnia R, Verdiloo HK (2012). Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album). International Journal of Agriculture: Research and Review 2 (3): 247-254.
  • Morkunas I, Woźniak A, Mai VC, Rucińska-Sobkowiak R, Jeandet P (2018). The role of heavy metals in plant response to biotic stress. Molecules 23:2320. doi: 10.3390/molecules23092320
  • Nardis BO, Silva EB, Grazziotti PH, Alleoni LRF, Melo LCA et al. (2018). Availability and zinc accumulation in forage grasses grown in contaminated soil. International Journal of Phytoremediation 20 (3): 205-213. doi:10.1080/15226514.2017.1365347
  • Ortega-Gracı´a F, Perago´n J (2009). The response of phenylalanine ammonia-lyase polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual). Journal of the Science of Food and Agriculture 89:1565-1573. doi: 10.1002/jsfa.3625
  • Özkul C, Acar RU, Köprübaşı N, Er AE, Kızılkaya HI et al. (2018). Preliminary investigation of heavy metal pollution in agricultural soils of Altıntaş (Kütahya-Turkey). Journal of Applied Earthsciences 17 (1): 13-26 (in Turkish with an abstract in English). doi: 10.30706/ uybd.426408
  • Panyakhan S, Kruatrachue M, Pokethitiyook P, Soonthornsarathoon V, Upatham S (2006). Toxicity and accumulation of cadmium and zinc in Hydrocotyle umbellate. Science Asia 32: 323-328. doi:10.2306/scienceasia1513-1874.2006.32.323
  • Pinto MST, Siqueira FP, Oliveira AEA, Fernandes KVS (2008). A wounding-induced PPO from cowpea (Vigna unguiculata) seedlings. Phytochemistry 69: 2297-2302. doi: 10.1016/j. phytochem.2008.06.003
  • Rascio N, Navari-Izzo F (2011). Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Science 180: 169-181. doi: 10.1016/j.plantsci.2010.08.016
  • Rauha, JP, Wolfender JL, Salminen JP, Pihlaja K, Hostettmann K et al. (2001). Characterization of polyphenolic of purple loosestrife (Lythrum salicaria).Zeitschrift fur Naturforschung. C, Journal of Biosciences 56 (1-2): 13-20. doi:10.1515/znc-2001-1-203
  • Rickli EE, Ghazaxfar SAS, Gibbons BH, Edsali JT(1964). Carbonic anhydrases from human erythrocytes:preparation and properties of two enzymes. Journal of Biological Chemistry 239:1065-1078.
  • Rout GR, Das P (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc Agronomie 23 (1): 3-11. doi: 10.1007/978-90- 481-2666-8_53
  • Saleh ZZ (2017). Gümüşköy (Kütahya) maden sahasında karasal bitkilerde Zn ve Sb bioakümülasyonları. Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, Türkiye (in Turkish).
  • Shakya K, Chettri MK, Sawidis T (2008).Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Archives of Environmental Contamination and Toxicology 54: 412-421. doi: 10.1007/s00244-007-9060-y
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS et al. (2020). Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation 39:509-531. doi: 10.1007/s00344-019-10018-x
  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science 6:1143. doi: 10.3389/fpls.2015.01143
  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012). Phytoremediation potential of aquatic macrophyte, Azolla. AMBIO 41:122-137. doi: 10.1007/s13280-011-0159-z
  • Soltangheisi A, Abdul Rahman Z, Ishak CF, Musa HM, Zakikhani H (2014). Effect of zinc and phosphorus supply on the activity of carbonic anhydrase and the ultrastructure of chloroplast in sweet corn (Zea mays var. saccharata). Asian Journal of Plant Sciences 13 (2): 51-58. doi: 10.3923/ajps.2014.51.58
  • Sun H, Wang Z, Gao P, Liu P (2013). Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiologiae Plantarum 35 (2): 355-364. doi: 10.1007/s11738-012- 1078-8
  • Swarnalatha K, Radhakrishnan B (2015). Studies on removal of zinc and chromium from aqueous solutions using water hyacinth. Pollution 1 (2): 193-202. doi: 10.7508/PJ.2015.02.007
  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019). Phytohormone priming: Regulator for heavy metal stress in plants. Journal of Plant Growth Regulation 38:739-752. doi: 10.1007/s00344-018-9886-8
  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N et al. (2011). A review on heavymetals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 21: 1-31. doi: 10.1155/2011/939161
  • Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi MM et al. (2017). Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. International Journal of Molecular Sciences 18: 377. doi: 10.3390/ijms18020377
  • Tel-Or E, Forni C (2011). Phytoremediation of hazardous toxic metals and organics by photosynthetic aquatic systems. Plant Biosystems 145 (1): 224-235. doi: 10.1080/11263504.2010.509944
  • Thayaparan M, Iqbal SS, Iqbal MCM (2015). Phytoremediation potential of Lemna minor for removal of Cr(VI) in aqueous solution at the optimum nutrient strength. OUSL Journal 9:97-111. doi: 10.4038/ ouslj.v9i0.7329
  • Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004). Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Science 167: 693-703.
  • Tripathi DK, Singh S, Singh S, Mishra S, Chauhan DK et al. (2015). Micronutrients andtheir diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum 37 (139): 1-14. doi: 10.1007/s11738-015-1870-3
  • Tsonev T, Lidon FJC (2012). Zinc in plants -an overview. Emirates Journal of Food and Agriculture 24 (4):322-333.
  • Wechtler L, Laval-Gilly P, Bianconi O, Walderdorff L, Bonnefoy A et al. (2019). Trace metal uptake by native plants growing on a brownfield in France: zinc accumulation by Tussilago farfara L. Environmental Science and Pollution Research 26: 36055-36062. doi: 10.1007/s11356-019-06892-3
  • Wei-Hong S, Yan-You Wu, Zhen-Zhen S, Qiu-Xia W, Xin-Yu W (2014). Enzymatic characteristics of higher plant carbonic anhydrase and its role in photosynthesis.Journal of Plant Studies 3 (2):39-44.doi: 10.5539/jps.v3n2p39
  • Wilbur KM, Anderson NG (1948). Electrometric and colorimetric determination of carbonic anhydrase. Journal of Biological Chemistry 176:147-154.
APA Akanıl Bingol N, AKIN B, Kocaçalışkan İ, Nalbantoğlu B, MEŞELİ O (2021). Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. , 553 - 562. 10.3906/bot-2107-52
Chicago Akanıl Bingol Nuket,AKIN BETÜL,Kocaçalışkan İsmail,Nalbantoğlu Barbaros,MEŞELİ ONUR Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. (2021): 553 - 562. 10.3906/bot-2107-52
MLA Akanıl Bingol Nuket,AKIN BETÜL,Kocaçalışkan İsmail,Nalbantoğlu Barbaros,MEŞELİ ONUR Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. , 2021, ss.553 - 562. 10.3906/bot-2107-52
AMA Akanıl Bingol N,AKIN B,Kocaçalışkan İ,Nalbantoğlu B,MEŞELİ O Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. . 2021; 553 - 562. 10.3906/bot-2107-52
Vancouver Akanıl Bingol N,AKIN B,Kocaçalışkan İ,Nalbantoğlu B,MEŞELİ O Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. . 2021; 553 - 562. 10.3906/bot-2107-52
IEEE Akanıl Bingol N,AKIN B,Kocaçalışkan İ,Nalbantoğlu B,MEŞELİ O "Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.." , ss.553 - 562, 2021. 10.3906/bot-2107-52
ISNAD Akanıl Bingol, Nuket vd. "Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.". (2021), 553-562. https://doi.org/10.3906/bot-2107-52
APA Akanıl Bingol N, AKIN B, Kocaçalışkan İ, Nalbantoğlu B, MEŞELİ O (2021). Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. Turkish Journal of Botany, 45(6), 553 - 562. 10.3906/bot-2107-52
Chicago Akanıl Bingol Nuket,AKIN BETÜL,Kocaçalışkan İsmail,Nalbantoğlu Barbaros,MEŞELİ ONUR Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. Turkish Journal of Botany 45, no.6 (2021): 553 - 562. 10.3906/bot-2107-52
MLA Akanıl Bingol Nuket,AKIN BETÜL,Kocaçalışkan İsmail,Nalbantoğlu Barbaros,MEŞELİ ONUR Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. Turkish Journal of Botany, vol.45, no.6, 2021, ss.553 - 562. 10.3906/bot-2107-52
AMA Akanıl Bingol N,AKIN B,Kocaçalışkan İ,Nalbantoğlu B,MEŞELİ O Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. Turkish Journal of Botany. 2021; 45(6): 553 - 562. 10.3906/bot-2107-52
Vancouver Akanıl Bingol N,AKIN B,Kocaçalışkan İ,Nalbantoğlu B,MEŞELİ O Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.. Turkish Journal of Botany. 2021; 45(6): 553 - 562. 10.3906/bot-2107-52
IEEE Akanıl Bingol N,AKIN B,Kocaçalışkan İ,Nalbantoğlu B,MEŞELİ O "Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.." Turkish Journal of Botany, 45, ss.553 - 562, 2021. 10.3906/bot-2107-52
ISNAD Akanıl Bingol, Nuket vd. "Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L.". Turkish Journal of Botany 45/6 (2021), 553-562. https://doi.org/10.3906/bot-2107-52