Yıl: 2021 Cilt: 45 Sayı: 3 Sayfa Aralığı: 273 - 284 Metin Dili: İngilizce DOI: 10.3906/tar-2009-109 İndeks Tarihi: 05-06-2022

Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression

Öz:
Powdery mildew caused by the fungal pathogen Erysiphe necator is a global disease that reduces yield and quality in grapes (Vitis vinifera L.). Most grape cultivars are susceptible to this pathogen and thus the selection of powdery mildew resistant cultivars is a major objective of grape breeding programs. In this study, we evaluated powdery mildew resistance of a diverse set of 28 commonly cultivated local and international V. vinifera cultivars after artificial inoculations with Erysiphe necator. Of these, 7 cultivars were found to be resistant while 10 and 11, were found to be moderately resistant and susceptible to powdery mildew, respectively. We also analyzed pathogen-responsive expression profiles of two defense genes, VvPR1 and VvGLP3 encoding a pathogenesis-related protein 1 homolog and a Germin-Like protein, respectively, in the same cultivars by qRT-PCR to determine whether defense gene expression is correlated with powdery mildew resistance. There was no significant correlation between powdery mildew ratings and induction patterns of these two defense genes. However, a significant correlation was found between VvPR1 and VvGLP3 expression only in cultivars that showed increased powdery mildew resistance. In addition, the grape cultivars we analyzed differed by berry ripening times, were shown to influence disease resistance. However, no significant correlation was found between powdery mildew ratings and the ripening times. Although potential mechanisms of powdery mildew resistance or susceptibility remain unclear, powdery mildew resistant grape cultivars identified here will be useful for growers and breeders interested in using these lines as parents in grape breeding programs.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmad A, Ahmed A, Essa R, Baber S, Jamshed A et al. (2019). Insilico analysis of grapevine Germin like protein (VvGLP3) and its probable role in defense against powdery mildew disease. Life Science Journal of Pakistan 1 (2): 17-23.
  • Albayrak S, Karabıçak Y, Tuncer S, Alaserhat İ, Karadoğan B et al. (2018). Determination of efficiency of different spraying programs to powdery mildew (Erysiphe necator Schw.) in vineyard. Plant Protection Bulletin 58 (4): 199-206. doi: 10.16955/bitkorb. 430594
  • Antoniw J, Ritter C, Pierpoint W, Van Loon L (1980). Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. Journal of General Virology 47: 79-87. doi: 10.1099/0022-1317-47-1-79
  • Barker CL, Donald T, Pauquet J, Ratnaparkhe M, Bouquet A et al. (2005). Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical and Applied Genetics 111: 370-377. doi: 10.1007/s00122-005-2030-8
  • Bioletti FT (2016). Oidium or powdery mildew of the vine: Read Books Ltd.
  • Boubals D (1961). Etude des causes de la résistance des Vitacées a l’oidium de la vigne Uncinula necator (Schw. Burr.) et leurmoed de transmission hèrèditaire. Ann. L’Amél des Plantes 11: 401- 500.
  • Cadle-Davidson L, Chicoine DR, Consolie NH (2011). Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Disease 95 (2): 202- 211. doi: 10.1094/PDIS-02-10-0092
  • Calonnec A, Jolivet J, Vivin P, Schnee S (2018). Pathogenicity traits correlate with the susceptible Vitis vinifera leaf physiology transition in the biotroph fungus erysiphenecator: an adaptation to plant ontogenic resistance. Frontiers in Plant Science 9: 1808. doi: 10.3389/fpls.2018.01808
  • Carter C, Thornburg RW (2000). Tobacco nectarin I purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. The Journal of Biological Chemistry 275: 36726-36733. doi: 10.1074/jbc.M006461200
  • Chellemi DO, Marois J (1992). Influence of leaf removal, fungicide applications, and fruit maturity on incidence and severity of grape powdery mildew. American Journal of Enology and Viticulture 43: 53-57.
  • Debieu D, Corio-Costet M-F, Steva H, Malosse C, Lereoux P (1995). Sterol composition of the vine powdery mildew fungus, Uncinulanecator: Comparison of triadimenol-sensitive and resistant strains. Phytochemistry 39: 293-300. doi: 10.1016/0031-9422(95)00015-Y
  • Delen N, Onoğur E, Öncü M (1987). Bağ Küllemesi (Uncinula Necator Sch. Burr.)’nin kimyasal savaşımı üzerinde araştırmalar. Doğa 11 (2): 303-309 (in Turkish)
  • Delp CJ (1954). Effect of temperature and humidity on the grape powdery mildew fungus. Phytopathology 44.
  • Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR et al. (2002). Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical and Applied Genetics 104: 610-618. doi: 10.1007/ s00122-001-0768-1
  • Doster MA, Schnathorst WC (1985a). Effects of leaf maturity and cultivar resistance on development of powdery mildew fungus on grapevines. Phytopathology 75: 318-321. doi: 10.1094/ Phyto-75-318
  • Doster MA, Schnathorst WC (1985b). Comparative susceptibility of various grapevine cultivars to the powdery mildew fungus Uncinula Necator. American Journal of Enology and Viticulture 36: 1001-104.
  • Dry IB, Feechan A, Anderson C, Jermakow A, Bouquet A et al. (2010). Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. Australian Journal of Grape and Wine Research 16: 94-105. doi: 10.1111/j.1755- 0238.2009.00076.x
  • Dufour MC, Fontaine S, Montarry J, Corio-Costet MF (2011). Assessment of fungicide resistance and pathogen diversity in Erysiphe necator using quantitative real-time PCR assays. Pest Management Science 67: 60-69. doi: 10.1002/ps.2032
  • Eibach R (1994). Investigations about the genetic resources of grapes with regard to resistance characteristiques to powdery mildew (Oidium tuckeri). Vitis 33: 143-150. doi: 10.5073/ vitis.1994.33.143-150
  • El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S (2010). Regulation of two germin-like protein genes during plum fruit development. The Journal of Experimental Botany 61: 1761- 1770. doi: 10.1093/jxb/erq043
  • Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot J-M et al. (2010). A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biology 10: 241. doi: 10.1186/1471-2229-10-241
  • Erickson EO, Wilcox WF (1997). Distributions of sensitivities to three sterol demethylation inhibitor fungicides among populations of Uncinula necator sensitive and resistant to triadimefon. Phytopathology 87: 784-791. doi: 10.1094/ PHYTO.1997.87.8.784
  • Feechan A, Jermakow AM, Torregrosa L, Panstruga R, Dry IB (2008). Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Functional Plant Biology 35: 1255-1266. doi: 10.1071/FP08173
  • Feechan A, Kabbara S, Dry IB (2011). Mechanisms of powdery mildew resistance in the Vitaceae family. Molecular Plant Pathology 12: 263-274. doi: 10.1111/j.1364-3703.2010.00668.x.
  • Fessler C. Kassemeyer HH (1995). The influence of temperature during the development of conidia on the germination of Uncinula necator. Vitis 34: 63-64. doi: 10.5073/vitis.1995.34.63-64
  • Ficke A, Gadoury DM, Seem RC, Dry IB (2003). Effects of ontogenic resistance upon establishment and growth of Uncinula necator on grape berries. Phytopathology 93: 556-563. doi: 10.1094/ PHYTO.2003.93.5.556
  • Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y et al. (2008). Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiology 146: 236-249. doi: 10.1104/ pp.107.108712
  • Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC et al. (2012a). Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology 13: 1-16. doi: 10.1111/j.1364-3703.2011.00728.x
  • Gadoury DM, Seem RC, Ficke A, Wilcox WF (2003). Ontogenic resistance to powdery mildew in grape berries. Phytopathology 93: 547-555. doi: 10.1094/PHYTO.2003.93.5.547
  • Gadoury DM, Wakefield LM, Cadle-Davidson L, Dry IB, Seem RC (2012b). Effects of prior vegetative growth, inoculum density, light, and mating on conidiation of Erysiphe necator. Phytopathology 102: 65-72. doi: 10.1094/PHYTO-03-11-0085
  • Gaforio L, Garcia-Munoz S, Cabello F, Munoz-Organero G (2011). Evaluation of susceptibility to powdery mildew (Erysiphe necator) in Vitis vinifera varieties. Vitis 50: 123-126.
  • Gambino G, Perrone I, Gribaudo I (2008). A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis 19: 520-525. doi: 10.1002/pca.1078
  • Gamir J, Darwiche R, Van’t Hof P, Choudhary V, Stumpe M et al. (2017). The sterol-binding activity of PATHOGENESISRELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. The Plant Journal 89: 502-509. doi: 10.1111/tpj.13398
  • Gee CT, Gadoury DM, Cadle-Davidson L (2008.) Ontogenic resistance to Uncinulanecator varies by genotype and tissue type in a diverse collection of Vitis spp. Plant Disease 92: 1067- 1073. doi: 10.1094/PDIS-92-7-1067
  • Godfrey D, Able AJ, Dry IB (2007). Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? Molecular Plant-Microbe Interactions 20: 1112-1125. doi: 10.1094/MPMI-20-9-1112
  • Goyal N, Bhatia G, Sharma S, Garewal N, Upadhyay A et al. (2019). Genome-wide characterization revealed role of NBSLRR genes during powdery mildew infection in Vitis vinifera. Genomics S0888-7543 (18): 30732-8. doi: 10.1016/j. ygeno.2019.02.011
  • Haile ZM, Pilati S, Sonego P, Malacarne G, Vrhovsek U et al. (2017). Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence. Plant, Cell & Environment 40: 1409-1428. doi: 10.1111/ pce.1293
  • Kabaktepe Ş, Heluta V, Akata I (2015). Checklist of powdery mildews (Erysiphales) in Turkey. Biyolojik Çeşitlilik ve Koruma 8: 128- 146.
  • Kazan K (2018). A new twist in SA signalling. Nature Plants 4 (6): 327-328. doi: 10.1038/s41477-018-0171-4
  • Kazan K, Gardiner DM (2017). Targeting pathogen sterols: defence and counterdefence? PLOS Pathogens 18, 13 (5): e1006297. doi: 10.1371/journal.ppat.1006297
  • Khiavi HK, Davoodi A (2016). Resistance evaluation of some commercial Vitis vinifera varieties to powdery mildew Erysiphe necator Schwein. in two regions of Iran. Journal of Crop Protection 5 (2): 229-237. doi: 10.18869/modares. jcp.5.2.229
  • Khiavi HK, Shikhlinskiy H, Ahari AB, Akrami M (2012). Evaluation of different grape varieties for resistance to powdery mildew caused by Uncinula necator. African Journal of Agricultural Research 7: 4182-4186. doi: 10.5897/AJAR12.1056
  • Le Henanff G, Farine S, Kieffer-Mazet F, Miclot AS, Heitz T et al. (2011). Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234 (2): 405-417. doi: 10.1007/s00425- 011-1412-1
  • Le Henanff G, Heitz T, Mestre P, Mutterer J, Walter B et al. (2009). Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC Plant Biology 9: 54. doi: 10.1186/1471-2229-9-54
  • León-Galván F, Joaquín-Ramos AdJ, Torres-Pacheco I, De la Rosa APB, Guevara-Olvera L et al. (2011). A germin-like protein gene (CchGLP) of Capsicum chinense Jacq. Is induced during incompatible interactions and displays Mn-Superoxide dismutase activity. International Journal of Molecular Sciences 12: 7301-7313. doi: 10.3390/ijms12117301
  • Li ZT, Dhekney SA, Gray DJ (2011). PR-1 gene family of grapevine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco. Plant Cell Reports 30: 1-11. doi: 10.1007/s00299-010- 0934-5
  • Liu Q, Xue Q (2006). Computational identification of novelPR-1- type genes in Oryza sativa. Journal of Genetics and Genomics 85: 193-198. doi: 10.1007/bf02935330
  • Liu SL, Wu J, Zhang P, Hasi G, Huang Y et al. (2016). Response of phytohormones and correlation of SAR signal pathway genes to the differentresistance levels of grapevine against Plasmoparaviticola infection. Plant Physiology and Biochemistry 107: 56-66. doi: 10.1016/j.plaphy.2016.05.020
  • Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H et al. (2008). Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defenserelated signal compounds (121/180). Molecular Genetics and Genomics 279: 415-427. doi: 10.1007/s00438-008-0322-9
  • Olmo HP (1971). Vinifera x rotundifolia hybrids as wine grapes. American Journal of Enology and Viticulture 22: 87-91.
  • Özer C, Solak E, Öztürk L, Özer N (2012). The development of powdery mildew-tolerant grape cultivars with standard quality characteristics by cross breeding. African Journal of. Agricultural Research 7: 1374-1380. doi: 10.5897/AJAR11.871
  • Pessina S, Lenzi L, Perazzolli M, Campa M, Costa Dalla L et al. (2016). Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Horticulture Research 3: 16016. doi: 10.1038/hortres.2016.16
  • Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 29 (9): e45. doi: 10.1093/nar/29.9.e45
  • Porep JU, Walter R, Kortekamp A, Carle R (2014). Ergosterol as an objective indicator for grape rot and fungal biomass in grapes. Food Control 37: 77-84. doi: 10.1016/j. foodcont.2013.09.012
  • Pospíšilová D (1978). Susceptibility of cultivars of Vitis vinifera to powdery mildew (Uncinula necator Schw. Burr.). In: Grapevine genetics and breeding. INRA, Paris, pp. 251-257.
  • Qiu W, Feechan A, Dry I (2015). Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research 2: 15020. doi: 10.1038/hortres.2015.20
  • Ramming DW, Gabler F, Smilanick J, Cadle-Davidson M, Barba P et al. (2011). A single dominant locus, ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology. 101 (4): 502-508. doi: 10.1094/ PHYTO-09-10-0237.
  • Repka V, Kubíková J, Fischerová I (2000). Immunodetection of PR1-like proteins in grapevine leaves infected with Oidiumtuckeri and in elicited suspension cell cultures. Vitis 39: 123-128. doi: 10.5073/vitis.2000.39.123-127
  • Riaz S, Boursiquot J-M, Dangl GS, Lacombe T, Laucou V et al. (2013). Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. BMC Plant Biology 13: 149. doi: 10.1186/1471-2229-13-149
  • Roubelakis-Angelakis KA (2009). Grapevine molecular physiology & biotechnology: Springer Science & Business Media.
  • Sall MA, Teviotdale BL (1981). Powdery mildew, in: Grape Pest Management. D. Flaherty, F. Jensen, A. Kasimatis, H. Kido and W. Moller (editors). Agricultural Sciences Publications, University of California, Berkeley, pp. 46-50
  • Savocchia S, Stummer B, Wicks T, Van Heeswijck R, Scott E (2004). Reduced sensitivity of Uncinula necator to sterol demethylation inhibiting fungicides in southern Australian vineyards. Australasian Plant Pathology 33: 465-473. doi: 10.1071/AP04066
  • Staudt G (1997). Evaluation of resistance to grapevine powdery mildew (Uncinula necator [Schw.] Burr., anamorph Oidium tuckeri Berk.) in accessions of Vitis species. Vitis 36: 151-154. doi: 10.5073/vitis.1997.36.151-154
  • Tangolar S, Ergenoğlu F, Gök S (1996). Ç.Ü. Ziraat Fakültesi Bahçe Bitkileri Bölümü Araştırma Bağı Üzüm Çeşitleri Kataloğu. Ç.Ü. Ziraat Fakültesi Yardımcı Ders Kitapları 29: 94 (in Turkish)
  • T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü (1996). Zirai Mücadele Standart İlaç Deneme Metodları, T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü, Ankara, 1, 447 p. (in Turkish)
  • Van Loon L, Pierpoint W, Boller T, Conejero V (1994). Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reports 12: 245-264. doi: 10.1007/BF02668748
  • Van Loon L, Van Strien E (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology 55: 85- 97. doi: 10.1006/pmpp.1999.0213.
  • Van Loon LC, Rep M, Pieterse CM (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44: 135-162. doi: 10.1146/annurev. phyto.44.070505.143425
  • Viala P (1893). Les maladies de la vigne, 3éd. In.: Masson, Paris.
  • Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J (1995). Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34: 159-164. doi: 10.5073/vitis.1995.34.159-164
  • Weete JD, Abril M, Blackwell M (2010). Phylogenetic distribution of fungal sterols. PLoS One 28, 5 (5): e10899. doi: 10.1371/journal. pone.0010899
  • Willocquet L, Colombet D, Rougier M, Fargues J, Clerjeau M (1996). Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. European Journal of Plant Pathology 102: 441-449. doi: 10.1007/ BF01877138
  • Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010). Characterization of a novel stilbene synthase promoter involved in pathogen-and stressinducible expression from Chinese wild Vitis pseudoreticulata. Planta 231: 475. doi: 10.1007/s00425-009-1062-8
  • Xu Y, Zhu Z, Xiao Y, Wang Y (2016). Construction of a cDNA library of Vitis pseudoreticulata native to China inoculated with Uncinula necator and the analysis of potential defencerelated expressed sequence tags (ESTs). South African Journal for Enology and Viticulture 30: 65-71. doi: 10.21273/ HORTSCI.41.4.993C
  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K et al. (2000). Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Reports 19: 639-646. doi: 10.1007/s002999900174
APA Demirel S, TANGOLAR S, Kazan K, Yüksel Özmen c, Öktem M, KİBAR U, Mujtaba M, TANGOLAR S, ergul a (2021). Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. , 273 - 284. 10.3906/tar-2009-109
Chicago Demirel Sinem,TANGOLAR Serpil,Kazan Kemal,Yüksel Özmen canan,Öktem Mert,KİBAR UMUT,Mujtaba Muhammad,TANGOLAR Semih,ergul ali Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. (2021): 273 - 284. 10.3906/tar-2009-109
MLA Demirel Sinem,TANGOLAR Serpil,Kazan Kemal,Yüksel Özmen canan,Öktem Mert,KİBAR UMUT,Mujtaba Muhammad,TANGOLAR Semih,ergul ali Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. , 2021, ss.273 - 284. 10.3906/tar-2009-109
AMA Demirel S,TANGOLAR S,Kazan K,Yüksel Özmen c,Öktem M,KİBAR U,Mujtaba M,TANGOLAR S,ergul a Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. . 2021; 273 - 284. 10.3906/tar-2009-109
Vancouver Demirel S,TANGOLAR S,Kazan K,Yüksel Özmen c,Öktem M,KİBAR U,Mujtaba M,TANGOLAR S,ergul a Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. . 2021; 273 - 284. 10.3906/tar-2009-109
IEEE Demirel S,TANGOLAR S,Kazan K,Yüksel Özmen c,Öktem M,KİBAR U,Mujtaba M,TANGOLAR S,ergul a "Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression." , ss.273 - 284, 2021. 10.3906/tar-2009-109
ISNAD Demirel, Sinem vd. "Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression". (2021), 273-284. https://doi.org/10.3906/tar-2009-109
APA Demirel S, TANGOLAR S, Kazan K, Yüksel Özmen c, Öktem M, KİBAR U, Mujtaba M, TANGOLAR S, ergul a (2021). Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. Turkish Journal of Agriculture and Forestry, 45(3), 273 - 284. 10.3906/tar-2009-109
Chicago Demirel Sinem,TANGOLAR Serpil,Kazan Kemal,Yüksel Özmen canan,Öktem Mert,KİBAR UMUT,Mujtaba Muhammad,TANGOLAR Semih,ergul ali Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. Turkish Journal of Agriculture and Forestry 45, no.3 (2021): 273 - 284. 10.3906/tar-2009-109
MLA Demirel Sinem,TANGOLAR Serpil,Kazan Kemal,Yüksel Özmen canan,Öktem Mert,KİBAR UMUT,Mujtaba Muhammad,TANGOLAR Semih,ergul ali Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. Turkish Journal of Agriculture and Forestry, vol.45, no.3, 2021, ss.273 - 284. 10.3906/tar-2009-109
AMA Demirel S,TANGOLAR S,Kazan K,Yüksel Özmen c,Öktem M,KİBAR U,Mujtaba M,TANGOLAR S,ergul a Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. Turkish Journal of Agriculture and Forestry. 2021; 45(3): 273 - 284. 10.3906/tar-2009-109
Vancouver Demirel S,TANGOLAR S,Kazan K,Yüksel Özmen c,Öktem M,KİBAR U,Mujtaba M,TANGOLAR S,ergul a Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. Turkish Journal of Agriculture and Forestry. 2021; 45(3): 273 - 284. 10.3906/tar-2009-109
IEEE Demirel S,TANGOLAR S,Kazan K,Yüksel Özmen c,Öktem M,KİBAR U,Mujtaba M,TANGOLAR S,ergul a "Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression." Turkish Journal of Agriculture and Forestry, 45, ss.273 - 284, 2021. 10.3906/tar-2009-109
ISNAD Demirel, Sinem vd. "Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression". Turkish Journal of Agriculture and Forestry 45/3 (2021), 273-284. https://doi.org/10.3906/tar-2009-109