Yıl: 2021 Cilt: 45 Sayı: 4 Sayfa Aralığı: 484 - 494 Metin Dili: İngilizce DOI: 10.3906/tar-2103-101 İndeks Tarihi: 06-06-2022

Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.)

Öz:
Almond production is usually affected by late spring frosts. Late flowering is an important trait in almond production in order to avoid frost damage. Breeding for late flowering has always been an important objective in almond breeding programs. Utilising molecular approaches may guide and accelerate breeding programs. In the present study, the expressions of the Prunus persica FLOWERING LOCUS T (PpFT) and Prunus armeniaca SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (PabSOC1) genes known as floral integrators that promote flowering in plants were determined in almonds (Amygdalus spp.). Frost tolerance is another important trait in almond production. Almond accessions may vary in terms of frost tolerance. The expressions of Prunus dulcis C-repeat-binding factors (PdCBF1) and (PdCBF2) genes that are the major components in the cold responsive network of plants were studied in almonds. Real time PCR analysis of buds revealed the differential expression pattern of PpFT, PabSOC1, PdCBF1, PdCBF2 genes. The expressions of PpFT and PabSOC1 correlated with each other. Similarly, the expressions of PdCBF1 and PdCBF2 genes revealed a similar expression pattern in almonds. However, the expression of flowering genes were inversely correlated with the cold response genes in most of the almond accessions. This finding revealed the crosstalk between flowering integrator genes and cold responsive genes in controlling flowering in almonds.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Agliassa, C, Narayana R, Bertea CM, Rodgers CT, Maffei ME (2018). Reduction of the geomagnetic field delays arabidopsis thaliana flowering time through downregulation of floweringrelated genes. Bioelectromagnetics 39: 361-374. doi: 10.1002/ bem.22123
  • Alisoltani A, Shiran B, Ebrahimi E, Fallahi H, Mousavi S et al. (2015). Expression of genes related to macromolecule metabolic process under cold stress in almond (Prunus dulcis Mill) using RNA-seq analysis. Modern Genetics Journal 12 (1): 21-32.
  • Barros PM, Cherian S, Costa M, Sapeta H, Saibo NJM et al. (2017). The identification of almond GIGANTEA gene and its expression under cold stress, variable photoperiod, and seasonal dormancy. Biologia Plantarum 61 (4): 631-640. doi:10.1007/s10535-017-0711-1
  • Barros PM, Gonçalves N, Nelson JM, Saibo NJM, Oliveira MM (2012a). Functional characterization of two almond C-repeatbinding factors involved in cold response. Tree Physiology 32: 1113-1128. doi: 10.1093/treephys/tps067
  • Barros PM, Gonçalves N, Nelson JM, Saibo NJM, Oliveira MM (2012b). Cold acclimation and floral development in almond bud break:insights into the regulatory pathways. Journal of Experimental Botany 63 (12): 4585-4596. doi: 10.1093/jxb/ ers144
  • Baurle I, Dean C (2006). The timing of developmental transitions in plants. Cell 125: 655-664. doi: 10.1016/j.cell.2006.05.005
  • Bayazit S, Çalışkan O, Irmak B (2011). Comparison of pollen production and quality characteristics of cultivated and wild almond species. Chilean Journal of Agricultural Research 71 (4): 536-541. doi: 10.4067/S0718-58392011000400006
  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R et al. (2006). The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant, Cell & Environment 29: 1259-1272. doi: 10.1111/j.1365-3040.2006.01505.x
  • Blazquez MA, Ahn JH, Weigel D (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics 33: 168-171. doi: 10.1038/ng1085
  • Boss PK, Bastow RM, Mylne JS, Dean C (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16 (Suppl.): S18-S31. doi: 10.1105/tpc.015958
  • Chew YH, Halliday KJ (2010). A stress-free walk from Arabidopsis to crops. Current Opinion in Biotechnology 22 (2): 281-286. doi: 10.1016/j.copbio.2010.11.011
  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X et al. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17: 1043- 1054. doi: 10.1101/gad.1077503
  • Chinnusamy V, Zhu J, Zhu JK (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science 12: 444-451. doi: 10.1016/j.tplants.2007.07.002
  • Erez A (2000). Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics. In: Erez A (editor). Temperate Fruit Crops in Warm Climates. Dordrecht, The Netherlands: Springer, pp 17-48.
  • Gilmour SJ, Fowler SG, Thomashow MF (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Molecular Biology 54: 767-781. doi: 10.1023/B:plan.0000040902.06881.d4
  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology 124 (4): 1854-1865. doi: 10.1104/pp.124.4.1854
  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM et al. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in coldinduced COR gene expression. Plant Journal 16 (4): 433-442. doi: 10.1046/j.1365-313x.1998.00310.x
  • Hoagland DR, Arnon DI (1950). The ater culture method for growing plants without soil. California Agricultural Experimental Station Circular 347:1-32.
  • Imani A, Mahamadkhani Y (2011). Characteristics of almond selections in relation to late frost spring. International Journal of Nuts and Related Sciences 2 (2): 77-80.
  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M et al. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant & Cell Physiology 47: 141-145. doi: 10.1093/pcp/pci230
  • İbrahime M, Kibar U, Kazan K, Yüksel Özmen C, Mutaf F et al. (2019). Genome-wide identification of the LEA protein gene family in grapevine (Vitis vinifera L.). Tree Genetics and Genomes 15 (4):55. doi: 10.1007/s11295-019-1364-3
  • Kitamura Y, Takeuchia T, Yamanea H, Taoa R (2016). Simultaneous down-regulation of dormancy-assocıated MADS-box6 and SOC1 during dormancy release in Japanese apricot (Prunus mume) flower buds. Journal of Horticultural Science and Biotechnology 91 (5): 476-482. doi: 10.1080/14620316.2016.1173524
  • Lee J, Lee I (2010). Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61(9):2247-2254. doi:10.1093/jxb/erq098
  • Lee S, Kim J, Han JJ, Han MJ, An.G (2004). Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant Journal 8 (5): 754-64. doi: 10.1111/j.1365-313X.2004.02082.x
  • Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402-408. doi: 10.1006/meth.2001.1262
  • Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology 119: 463-470. doi: 10.104/ pp.119.2.463
  • Medina J, Catala R, Salinas J (2011). The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Science 180: 3-11. doi: 10.1016/j.plantsci.2010.06.019
  • Moon J, Lee H, Kim M, Lee I (2005). Analysis of flowering pathway integrators in Arabidopsis. Plant & Cell Physiology 46: 292- 299. doi: 10.1093/pcp/pci024
  • Mouradov A, Cremer F, Coupland G (2002). Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 (suppl.) S111-S130. doi: 10.1105/tpc.001362
  • Novillo F, Medina J, Salinas J (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. PNAS 104 (52): 21002-21007. doi: 10.1073/pnas.0705639105
  • Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G (2000). Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis floweringtime genes. Plant Cell 12: 885-900. doi: 10.1105/tpc.12.6.885
  • Parcy F (2005). Flowering: a time for integration. International Journal of Developmental Biology 49: 585-593. doi: 10.1387/ ijdb.041930fp
  • Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y et al. (2015). Regulation of the Arabidopsis CBF regulon by a complex lowtemperature regulatory network. Plant Journal 82 (2): 193-207. doi: 10.1111/tpj.12796
  • Seo E, Lee H, Jeon J, Park H, Kim J et al. (2009). Crosstalk between cold response and flowering in arabidopsis ıs mediated through the flowering-time gene soc1 and ıts upstream negative regulator flc. Plant Cell 21: 3185-3197. doi: 10.1105/tpc.108.063883
  • Shi H, Qian Y, Tan DX, Reiter RJ, He C (2015). Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. Journal of Pineal Research 59: 334-342. doi: 10.1111/jpi.12262
  • Silva C, Garcia-Mas J, Sanchez MA, Arus P, Oliveira MM (2005). Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theoretical and Applied Genetics 110: 959-968. doi: 10.1007/s00122-004- 1918-z
  • Simpson GG, Dean C (2002). Arabidopsis, the rosetta stone of flowering time? Science 296: 285-289. doi: 10.1126/ science.296.5566.285
  • Socias i Company R, Felipe AJ, Gómez Aparisi J (1999). A major gene for flowering time in almond. Plant Breeding 118: 443-448. doi: 10.1046/j.1439-0523.1999.00400.x
  • Sorkeh K, Shiran B, Gradziel TM, Epperson BK Martı´nez-Go´mez P et al. (2007). Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica 156: 327-344. doi: 10.1007/s10681-007-9382-x
  • Tan FC, Swain SM (2007). Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiologia Plantarum 131 (3): 481-495. doi: 10.1111/j.1399- 3054.2007.00971.x
  • Trainin T, Bar-Ya’akov I, Holland D (2013). ParSOC1, a MADS-box gene closely related to Arabidopsis AGL20/SOC1, is expressed in apricot leaves in a diurnal manner and is linked with chilling requirements for dormancy break. Tree Genetics and Genomes 9: 753-766. doi: 10.1007/s11295-012-0590-8
  • Turck F, Fornara F, Coupland G (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology 59: 573-594. doi: 10.1146/annurev. arplant.59.032607.092755
  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant Journal 41: 195-211. doi: 10.1111/j.1365- 313X.2004.02288.x
  • Yılmaz A (2017). Gaziantep ili Araban ve Yavuzeli ilçelerinde doğal olarak yetişen bademlerin (Prunus amygdalus Batsch) seleksiyonu. PhD, Ankara University, Ankara, Turkey (in Turkish).
APA ÖZDEMİR B, Okay Y, Sarıkamış G, Yüksel Özmen c, KİBAR U, ergul a (2021). Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). , 484 - 494. 10.3906/tar-2103-101
Chicago ÖZDEMİR BAŞAK,Okay Yeşim,Sarıkamış Gölge,Yüksel Özmen canan,KİBAR UMUT,ergul ali Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). (2021): 484 - 494. 10.3906/tar-2103-101
MLA ÖZDEMİR BAŞAK,Okay Yeşim,Sarıkamış Gölge,Yüksel Özmen canan,KİBAR UMUT,ergul ali Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). , 2021, ss.484 - 494. 10.3906/tar-2103-101
AMA ÖZDEMİR B,Okay Y,Sarıkamış G,Yüksel Özmen c,KİBAR U,ergul a Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). . 2021; 484 - 494. 10.3906/tar-2103-101
Vancouver ÖZDEMİR B,Okay Y,Sarıkamış G,Yüksel Özmen c,KİBAR U,ergul a Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). . 2021; 484 - 494. 10.3906/tar-2103-101
IEEE ÖZDEMİR B,Okay Y,Sarıkamış G,Yüksel Özmen c,KİBAR U,ergul a "Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.)." , ss.484 - 494, 2021. 10.3906/tar-2103-101
ISNAD ÖZDEMİR, BAŞAK vd. "Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.)". (2021), 484-494. https://doi.org/10.3906/tar-2103-101
APA ÖZDEMİR B, Okay Y, Sarıkamış G, Yüksel Özmen c, KİBAR U, ergul a (2021). Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). Turkish Journal of Agriculture and Forestry, 45(4), 484 - 494. 10.3906/tar-2103-101
Chicago ÖZDEMİR BAŞAK,Okay Yeşim,Sarıkamış Gölge,Yüksel Özmen canan,KİBAR UMUT,ergul ali Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). Turkish Journal of Agriculture and Forestry 45, no.4 (2021): 484 - 494. 10.3906/tar-2103-101
MLA ÖZDEMİR BAŞAK,Okay Yeşim,Sarıkamış Gölge,Yüksel Özmen canan,KİBAR UMUT,ergul ali Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). Turkish Journal of Agriculture and Forestry, vol.45, no.4, 2021, ss.484 - 494. 10.3906/tar-2103-101
AMA ÖZDEMİR B,Okay Y,Sarıkamış G,Yüksel Özmen c,KİBAR U,ergul a Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). Turkish Journal of Agriculture and Forestry. 2021; 45(4): 484 - 494. 10.3906/tar-2103-101
Vancouver ÖZDEMİR B,Okay Y,Sarıkamış G,Yüksel Özmen c,KİBAR U,ergul a Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.). Turkish Journal of Agriculture and Forestry. 2021; 45(4): 484 - 494. 10.3906/tar-2103-101
IEEE ÖZDEMİR B,Okay Y,Sarıkamış G,Yüksel Özmen c,KİBAR U,ergul a "Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.)." Turkish Journal of Agriculture and Forestry, 45, ss.484 - 494, 2021. 10.3906/tar-2103-101
ISNAD ÖZDEMİR, BAŞAK vd. "Crosstalk between flowering and cold tolerance genes in almonds (Amygdalus spp.)". Turkish Journal of Agriculture and Forestry 45/4 (2021), 484-494. https://doi.org/10.3906/tar-2103-101