Yıl: 2021 Cilt: 45 Sayı: 6 Sayfa Aralığı: 704 - 716 Metin Dili: İngilizce DOI: 10.3906/tar-2009-49 İndeks Tarihi: 06-06-2022

Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars

Öz:
Tomato (Solanum lycopersicum) is the second most important horticultural crop worldwide that is widely used as a model plant in genetic manipulation of Solanaceae. CRISPR/Cas9 system has been successfully utilized in several studies for genome edition of model tomato cultivars. However, these genome editing systems should be also optimized for commercial tomato cultivar for direct application of genome editing in field conditions. In this study, we have optimized an Agrobacterium-mediated gene transfer and regeneration system for CRISPR/Cas9 genome editing in two commercial tomato cultivars for the first time. The effect of explant type, genotype, pre-transformation time, Agrobacterium concentration, infection time, and different co-culture periods of bacteria were evaluated to optimize the regeneration and transformation parameters. The highest regeneration capacity of 83% was obtained from cotyledons of Crocker incubated in a medium supplemented with BA (3 mg/L) and IAA (0.1 mg/L). The maximum transformation frequency was obtained by using the following parameters: cotyledon explants of commercial Crocker cultivar that were left for 2 days of pre-transformation incubation, infected with Agrobacterium for 10 min at a concentration of OD600 of 0.6 and co-cultivated with Agrobacterium cells for 48 h. CRISPR/Cas9 system was tested with two gRNAs targeting the phytoene desaturase gene. Fully albino and chimeric plants were successfully produced with optimized transformation and culture conditions in up to 71% of all regenerated plants. In the current study, we optimized the implementation of the CRISPR/Cas9 technique in a commercial tomato cultivar and our method will enable breeders to make necessary changes in traits of interest to improve tomato crops for commercial applications.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU et al. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences 21 (7): 2590. doi: 10.3390/ijms21072590
  • Bae S, Kweon J, Kim H, Kim HS, Kim JS (2014). Microhomologybased choice of Cas9 nuclease target sites. Nature Methods 11: 705-706. doi: 10.1038/nmeth.3015
  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPRassociated9 system. Plant Physiology 166 (3): 1292-1297. doi: 10.1104/pp.114.247577
  • Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015). Highfrequency, precise modification of the tomato genome. Genome Biology 16 (1): 232. doi: 10.1186/s13059-015-0796-9
  • Chetty V, Ceballos N, Garcia D, Narváez-Vásquez J, Lopez W et al. (2013). Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Reports 32 (2): 239-247. doi: 10.1007/s00299-012-1358-1
  • Cruz-Mendívil A, Rivera-López J, Germán-Báez LJ, López-Meyer M, Hernández-Verdugo S et al. (2011). A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. Micro-Tom from leaf explants. HortScience 46 (12): 1655-1660. doi: 10.21273/HORTSCI.46.12.1655
  • Devi R, Dhaliwal MS, Kaur A, Gosal SS (2008). Effect of growth regulators on in vitro morphogenic response of tomato. Indian Journal of Biotechnology 7: 526-530.
  • Dangol D, Barakate S, Stephens J, Çalışkan ME et al. (2019). Genome editing of potato using CRISPR technologies: current development and future prospective. Plant Cell Tissue Organ Cult 139: 403-416. doi: 10.1007/s11240-019-01662-y
  • Deng L, Wang H, Sun C, Li Q, Jiang H et al. (2018). Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. Journal of Genetics and Genomics 45 (1). doi: 10.1016/j.jgg.2017.10.002
  • Fentik DA (2017). Review on genetics and breeding of tomato (Lycopersicon esculentum Mill). Advanced Crop Science Technology 5 (5): 306. doi: 10.4172/2329-8863.1000306
  • Hansen G (2000). Evidence for Agrobacterium-induced apoptosis in maize cells. Molecular Plant Microbe Interactions 13 (6): 649- 657. doi: 10.1094/MPMI.2000.13.6.649
  • Hsu CT, Cheng YJ, Yuan YH, Hung WF, Cheng QW et al. (2019). Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco. Plant Molecular Biology 101: 355-371. doi: 10.1007/s11103-019-00907-w
  • Hu J, Israeli A, Ori N, Sun TP (2018). DELLA-ARF/IAA interaction mediates crosstalk between gibberellin and auxin signaling in controlling fruit initiation in Solanum lycopersicum. The Plant Cell. doi: 10.1105/tpc.18.00363
  • Hus K, Betekhtin A, Pinski A, Rojek JM, Grzebelus E et al. (2020). A CRISPR/Cas9-based mutagenesis protocol for Brachypodium distachyon and its allopolyploid relative, Brachypodium hybridum. Frontiers Plant Science 11: 614. doi: 10.3389/ fpls.2020.00614
  • Jung YJ, Nogoy FM, Lee SK, Cho YG, Kang KK (2018) Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnology and Bioprocess Engineering 23 (1): 108-115. doi: 10.1007/s12257-017-0420-9
  • Kalyani BG, Rao S (2014). Effect of hormones on direct shoot generation in leaf explants of tomato. International Journal of Research in Biotechnology and Biochemistry 4 (1): 20-22. doi: 10.15835/nsb213556.
  • Kaur N, Alok A, Kaur N, Pandey P, Awasthi P et al. (2018). CRISPR/ Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics 18 (1): 89-99. doi: 10.1007/s10142-017-0577-5
  • Kaur P, Bansal KC (2010). Efficient production of transgenic tomatoes via Agrobacterium-mediated transformation. Biologia Plantarum 54 (2): 344-348. doi: 10.1007/s10535-010- 0060-9
  • Khan MS, Usman M, Lilla MI (2006). Facile plant regeneration from tomato leaves induced with spectinomycin. Pakistan Journal of Botany 38 (4): 947.
  • Khanna HK, Paul JY, Harding RM, Dickman MB, Dale JL (2007). Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Molecular Plant Microbe Interaction 20 (9): 1048-1054. doi: 10.1094/MPMI-20-9-1048
  • Khoudi H, Nouri KA, Gouiaa S, Masmoudi K (2009). Optimization of regeneration and transformation parameters in tomato and improvement of its salinity and drought tolerance. African Journal of Biotechnology 8 (22): 6068-6076. doi: 10.5897/ AJB09.057
  • Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK et al. (2017). Tomato facultative parthenocarpy results from Sl AGAMOUS‐ LIKE 6 loss of function. Plant Biotechnology Journal 15 (5): 634-647. doi: 10.1111/pbi.12662
  • Li R, Zhang L, Wang L, Chen L, Zhao R et al. (2018a). Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. Journal of Agricultural Food Chemistry 66 (34): 9042-9051. doi: 10.1021/acs.jafc.8b02177
  • Li X, Wang Y, Chen S, Tian H, Fu D et al. (2018b). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers Plant Science 9: 559. doi: 10.3389/ fpls.2018.00559
  • Liang G, Zhang H, Lou D, Yu D (2016). Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Scientific Reports 6: 21451. doi: 10.1038/srep21451
  • Liu X, Homma A, Sayadi J et al. (2016). Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Scientific Reports 6: 19675
  • Ma L, Zhu F, Li Z, Zhang J, Li X et al. (2015). TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. Plos One 10 (12): e0143877. doi: 10.1371/journal.pone.0143877
  • Miki D, Zhang W, Zeng W, Feng Z, Zhu JK (2018). CRISPR/Cas9- mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications 9 (1): 1-9. doi: 10.1038/s41467-018-04416-0
  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D et al. (2017). Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports 7 (1): 1-6. doi: 10.1038/s41598-017-00578-x
  • Pan C, Ye L, Qin L, Liu X, He Y et al. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports 6: 24765. doi: 10.1038/srep24765
  • Parkhi V, Bhattacharya A, Choudhary S, Pathak R, Gawade V et al. (2018). Demonstration of CRISPR-cas9-mediated pds gene editing in a tomato hybrid parental line. Indian Journal of Genetics and Plant Breeding 78 (1): 132-137. doi: 10.5958/0975-6906.2018.00016.0
  • Pino LE, Lombardi CS, Azevedo MS, Scotton DC, Borgo L et al. (2010). The Rg1 allele as a valuable tool for genetic transformation of the tomato ‘Micro-Tom’ model system. Plant Methods 6 (1): 23. doi: 10.1186/1746-4811-6-23
  • Prihatna C, Chen R, Barbetti MJ, Barker SJ (2019). Optimisation of regeneration parameters improves transformation efficiency of recalcitrant tomato. Plant Cell, Tissue and Organ Culture 137 (3): 473-483. doi: 10.1007/s11240-019-01583-w
  • Qiu D, Diretto G, Tavarza R, Giuliano G (2007). Improved protocol for Agrobacterium mediated transformation of tomato and production of transgenic plants containing carotenoid biosynthetic gene CsZCD. Scientia Horticulturae 112 (2): 172- 175. doi: 10.1016/j.scienta.2006.12.015
  • Santillán Martínez MI, Bracuto V, Koseoglou E. Appiano M, Jacobsen E et al. (2020). CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biology 20: 284. doi: 10.1186/s12870-020-02497-y
  • Sarker RH, Islam K, Hoque M (2009). In vitro regeneration and Agrobacterium-mediated genetic transformation of tomato (Lycopersicon esculentum Mill.). Plant Tissue Culture and Biotechnology 19 (1): 101-111. doi: 10.3329/ptcb.v19i1.5004
  • Sherkar HD, Chavan AM (2014). Studies on callus induction and shoot regeneration in tomato. Science Research Reporter 4 (1): 89-93.
  • Sing H, Kumar P, Chaudhari S, Edelstein M (2017). Tomato grafting: a global perspective. HortScience 52 (10): 1328-1336. doi: 10.21273/HORTSCI11996-17
  • Stukenberg D, Zauner S, Dell’Aquila G, Maier UG (2018). Optimizing CRISPR/Cas9 for the diatom Phaeodactylum tricornutum. Frontiers in Plant Science 9: 740. doi: 10.3389/fpls.2018.00740
  • Sun HJ, Uchii S, Watanabe S, Ezura H (2006). A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiology 47 (3): 426- 431. doi: 10.1093/pcp/pci251
  • Tanambell H, Quek SY, Bishop KS (2019). Screening of in vitro health benefits of tangerine tomatoes. Antioxidants 8 (7): 230. doi: 10.3390/antiox8070230
  • Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018). Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling Behavior 13 (10): e1525996. doi: 10.1080/15592324.2018.1525996
  • Thomazella D, Brail Q, Dahlbeck D, Staskawicz B (2016). CRISPRCas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRxiv, 064824. doi: 10.1101/064824
  • Tian L (2015). Recent advances in understanding carotenoidderived signaling molecules in regulating plant growth and development. Frontiers Plant Science 6: 790. doi: 10.3389/ fpls.2015.00790
  • Tomlinson L, Yang Y, Emenecker R, Smoker M, Taylor J et al. (2019). Using CRISPR/Cas9 genome editing in tomato to create a gibberellin‐responsive dominant dwarf DELLA allele. Plant Biotechnology Journal 17 (1): 132-140. doi: 10.1111/pbi.12952
  • Tsutsui H, Higashiyama T (2017). pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-Mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiology 58 (1): 46-56. doi: 10.1093/pcp/pcw191
  • Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R et al. (2017). Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports 7 (1): 1-8. doi: 10.1038/s41598-017-00501-4
  • Uniyal AP, Mansotra K, Yadav SK, Kumar V (2019). An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3 Biotech 9, 223. doi: 10.1007/s13205-019-1760-2
  • Wang L, Chen L, Li R, Zhao R, Yang M et al. (2017). Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. Journal of Agricultural Food Chemistry 65 (39): 8674-8682. doi: 10.1021/acs.jafc.7b02745
  • Wilson FM, Harrison K, Armitage AD, Simkin AJ, Harrison RJ (2019). CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Methods 15 (1): 45. doi: 10.1186/s13007-019-0428-6
  • Yin Y, Qin K, Song X, Zhang Q, Zhou Y et al. (2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiology 59 (11): 2239-2254. doi: 10.1093/pcp/pcy146
  • Yu Qh, Wang B, Li N, Tang Y, Yang S et al. (2017). CRISPR/ Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Scientific Reports 7 (1): 1-9. doi: 10.1038/s41598-017-12262-1
  • Zhang S, Wang L, Zhao R, Yu W, Li R et al. (2018). Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. Journal of Agricultural and Food Chemistry 66 (34): 8949-8956. doi: 10.1021/acs.jafc.8b02191
APA secgin z, KAVAS M, yıldırım k (2021). Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. , 704 - 716. 10.3906/tar-2009-49
Chicago secgin zafer,KAVAS MUSA,yıldırım kubilay Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. (2021): 704 - 716. 10.3906/tar-2009-49
MLA secgin zafer,KAVAS MUSA,yıldırım kubilay Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. , 2021, ss.704 - 716. 10.3906/tar-2009-49
AMA secgin z,KAVAS M,yıldırım k Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. . 2021; 704 - 716. 10.3906/tar-2009-49
Vancouver secgin z,KAVAS M,yıldırım k Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. . 2021; 704 - 716. 10.3906/tar-2009-49
IEEE secgin z,KAVAS M,yıldırım k "Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars." , ss.704 - 716, 2021. 10.3906/tar-2009-49
ISNAD secgin, zafer vd. "Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars". (2021), 704-716. https://doi.org/10.3906/tar-2009-49
APA secgin z, KAVAS M, yıldırım k (2021). Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. Turkish Journal of Agriculture and Forestry, 45(6), 704 - 716. 10.3906/tar-2009-49
Chicago secgin zafer,KAVAS MUSA,yıldırım kubilay Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. Turkish Journal of Agriculture and Forestry 45, no.6 (2021): 704 - 716. 10.3906/tar-2009-49
MLA secgin zafer,KAVAS MUSA,yıldırım kubilay Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. Turkish Journal of Agriculture and Forestry, vol.45, no.6, 2021, ss.704 - 716. 10.3906/tar-2009-49
AMA secgin z,KAVAS M,yıldırım k Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. Turkish Journal of Agriculture and Forestry. 2021; 45(6): 704 - 716. 10.3906/tar-2009-49
Vancouver secgin z,KAVAS M,yıldırım k Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars. Turkish Journal of Agriculture and Forestry. 2021; 45(6): 704 - 716. 10.3906/tar-2009-49
IEEE secgin z,KAVAS M,yıldırım k "Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars." Turkish Journal of Agriculture and Forestry, 45, ss.704 - 716, 2021. 10.3906/tar-2009-49
ISNAD secgin, zafer vd. "Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/ Cas9 genome editing of commercial tomato cultivars". Turkish Journal of Agriculture and Forestry 45/6 (2021), 704-716. https://doi.org/10.3906/tar-2009-49