Yıl: 2022 Cilt: 26 Sayı: 2 Sayfa Aralığı: 298 - 310 Metin Dili: İngilizce DOI: 10.29228/jrp.128 İndeks Tarihi: 07-06-2022

Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model

Öz:
Alzheimer’s disease (AD) and Type 2 Diabetes Mellitus (T2DM) are both characterized by similar pathologies, and studies have shown that various drugs from both groups may be effective in another. The effects of sodium-glucose co-transporter (SGLT)2 inhibitors in AD are unknown. According to molecular docking studies, various SGLT inhibitors have acetylcholinesterase (AChE) inhibition activity, which is therapeutic target for AD. In this study, we investigated the effects of SGLT2 inhibitor dapagliflozin on intracerebroventricular (icv) streptozotocin (STZ) induced sporadic AD rats using open field test (OFT), novel object recognition test (NORT), passive avoidance test (PAT) and Morris’s water maze test (MWMT). Rats were randomly divided into 4 groups: vehicle-control, icv STZ, dapagliflozin, and galantamine treatments groups. STZ was injected bilaterally in two divided doses on day 1 and 3. All treatments began on day 1 and continued to day 21. OFT was performed for evaluating animal locomotor activity and anxiety. Other behavioral tests, NORT, PAT, and MWMT was performed for determining of learning and memory ability of rats. On day 21, all rats were decapitated. Our results showed that treatments with dapagliflozin and galantamine significantly prevented learning and memory deficits in behavioral tests. Dapagliflozin may present as a potent dual inhibitor of SGLT2 and AChE. Our results may form the basis of future dual treatment against diabetes and diabetes-related neurological diseases. The effects of possible dual AChE and SGLT2 inhibition by a single compound may help to establish new drugs that perform both anti-AD and antidiabetic action.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Iqbal K, Grundke-Iqbal I. Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement. 2010; 6(5): 420-424. [CrossRef]
  • [2] Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986; 83(13): 4913-4917. [CrossRef]
  • [3] Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX. A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol. 2013; 47(2): 711-725. [CrossRef]
  • [4] Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol. 2004; 490(1-3): 115-125. [CrossRef]
  • [5] Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Küstermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Bruning JC. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA. 2004; 101(9): 3100-3105. [CrossRef]
  • [6] Bucht G, Adolfsson R, Lithner F, Winblad B. Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med Scand. 1983; 213(5): 387-392. [CrossRef]
  • [7] Cai Z, Yan LJ, Li K, Quazi SH, Zhao B. Roles of AMP-activated protein kinase in Alzheimer's disease. Neuromolecular Med. 2012; 14(1): 1-14. [CrossRef]
  • [8] Plaschke K, Hoyer S. Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci. 1993; 11(4): 477-483. [CrossRef]
  • [9] Duelli R, Schröck H, Kuschinsky W, Hoyer S. Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci. 1994; 12(8): 737-743. [CrossRef]
  • [10] Hoyer S, Muller D, Plaschke K. Desensitization of brain insulin receptor. Effect on glucose/energy and related metabolism. J Neural Transm Suppl. 1994; 44: 259-268. [CrossRef]
  • [11] Hoyer S, Lee SK, Löffler T, Schliebs R. Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci. 2000; 920: 256-258. [CrossRef]
  • [12] Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. J Alzheimers Dis. 2006; 9(1): 13-33. [CrossRef]
  • [13] Grieb P. Intracerebroventricular streptozotocin injections as a model of Alzheimer's disease: in search of a relevant mechanism. Mol Neurobiol. 2016; 53(3): 1741-1752. [CrossRef]
  • [14] Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci. 1998; 112(5): 1199- 1208. [CrossRef]
  • 15] Mythili MD, Vyas R, Akila G, Gunasekaran S. Effect of streptozotocin on the ultrastructure of rat pancreatic islets. Microsc Res Tech. 2004; 63(5): 274-281. [CrossRef]
  • [16] Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease. Lancet Neurol. 2011; 10(2): 187-198. [CrossRef]
  • [17] Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018; 141(7): 1917-1933. [CrossRef]
  • [18] Thome GR, Oliveira VA, Chitolina Schetinger MR, Saraiva RA, Souza D, Dorneles Rodrigues OE, Teixeria Rocha JB, Ineu RP, Pereira ME. Selenothymidine protects against biochemical and behavioral alterations induced by ICV-STZ model of dementia in mice. Chem Biol Interact. 2018; 294: 135-143. [CrossRef]
  • [19] Bokare AM, Bhonde M, Goel R, Nayak Y. 5-HT6 receptor agonist and antagonist modulates ICV-STZ-induced memory impairment in rats. Psychopharmacology. 2018; 235(5): 1557-1570. [CrossRef]
  • [20] DiTacchio KA, Heinemann SF, Dziewczapolski G. Metformin treatment alters memory function in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2015; 44(1): 43-48. [CrossRef]
  • [21] Yin QQ, Pei JJ, Xu S, Luo DZ, Dong SQ, Sun MH, You L, Sun ZJ, Liu XP. Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidant defense system in fructose-drinking insulin resistance rats. PLoS One. 2013; 8(3): e59313. [CrossRef]
  • [22] Prakash A, Kumar A, Ming LC, Mani V, Majeed AB. Modulation of the Nitrergic Pathway via Activation of PPARgamma Contributes to the Neuroprotective Effect of Pioglitazone Against Streptozotocin-Induced Memory Dysfunction. J Mol Neurosci. 2015; 56(3): 739-750. [CrossRef]
  • [23] Hanyu H, Sato T, Kiuchi A, Sakurai H, Iwamoto T. Pioglitazone improved cognition in a pilot study on patients with Alzheimer's disease and mild cognitive impairment with diabetes mellitus. J Am Geriatr Soc. 2009; 57(1): 177-179. [CrossRef]
  • [24] Claxton A, aker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, Callaghan M, Arbuckle M, Behl C, Craft S. Long acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia. J Alzheimers Dis. 2015; 45(4): 1269-1270. [CrossRef]
  • [25] McClean PL, Jalewa J, Holscher C. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav Brain Res. 2015; 293: 96-106. [CrossRef]
  • [26] Hansen HH, Barkholt P, Fabricius K, Jelsing J, Terwel D, Pyke C, Knudsen LB, Vrang N. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy. Brain Res. 2016; 1634: 158-170. [CrossRef]
  • [27] Ali MA, El-Abhar HS, Kamel MA, Attia AS. Antidiabetic effect of galantamine: novel effect for a known centrally acting drug. PLoS One. 2015; 10(8): e0134648. [CrossRef]
  • [28] Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017; 333: 43-50. [CrossRef]
  • [29] Lin B, Koibuchi N, Hasegawa Y, Sueta D, Toyama K, Uekawa K, Ma M, Nakagawa T, Kusaka H, Kim-Mitsuyama S. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014; 13: 148. [CrossRef]
  • [30] Arafa NMS, Ali EHA, Hassan MK. Canagliflozin prevents scopolamine-induced memory impairment in rats: Comparison with galantamine hydrobromide action. Chem Biol Interact. 2017; 277: 195-203. [CrossRef]
  • [31] Shaikh S, Rizvi SM, Shakil S, Riyaz S, Biswas D, Jahan R. Forxiga (dapagliflozin): Plausible role in the treatment of diabetes-associated neurological disorders. Biotechnol Appl Biochem. 2016; 63(1): 145-150. [CrossRef]
  • [32] Rizvi SM, Shakil S, Biswas D, Shakil S, Shaikh S, Bagga P, Kamal MA. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer's disease- diabetes type 2 linkage via an enzoinformatics study. CNS Neurol Disord Drug Targets. 2014; 13(3): 447-451. [CrossRef]
  • [33] Shakil S. Molecular interaction of anti-diabetic drugs with acetylcholinesterase and sodium glucose co-transporter 2. J Cell Biochem. 2017; 118(11): 3855-3865. [CrossRef]
  • [34] Cam ME, Yildiz S, Hazar-Yavuz AN, Keles R, Ertas B, Kabasakal L. Dapagliflozin attenuates depressive-like behavior of male rats in the forced swim test. Eur J Pharmacol. 2019; 29: 262-263. [CrossRef]
  • [35] Keles R, Hazar-Yavuz AN, Yildiz S, Cam ME, Sener G. Dapagliflozin attenuates anxiolytic-like behavior of rats in open field test. Eur J Pharmacol. 2019; 29: 201-202. [CrossRef]
  • [36] Du LL, Chai DM, Zhao LN, Li XH, Zhang FC, Zhang HB, Liu LB, Wu K, Liu R, Wang JZ, Zhou XW. AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis. 2015; 43(3): 775-784. [CrossRef]
  • [37] Du LL, Xie JZ, Cheng XS, Li XH, Kong FL, Jiang X, Ma ZW, Wang JZ, Chen C, Zhou XW. Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. Age. 2014; 36(2): 613-623. [CrossRef]
  • [38] Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer P. What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer's disease, about the therapeutic strategies in Alzheimer's research. J Neural Transm. 2013; 120(1): 233-252. [CrossRef]
  • [39] Unal G, Aricioglu F. A-582941, cholinergic alpha 7 nicotinic receptor agonist, improved cognitive and negative symptoms of the sub-chronic MK-801 model of schizophrenia in rats. Psychiatr Clin Psychopharmacol. 2018; 28(1): 4-13. [CrossRef]
  • [40] Fujisaki Y, Matsuo R. Context-dependent passive avoidance learning in the terrestrial slug limax. Zoolog Sci. 2017; 34(6): 532-537. [CrossRef]
  • [41] Abdel-Aal RA, Assi AA, Kostandy BB. Rivastigmine reverses aluminum-induced behavioral changes in rats. Eur J Pharmacol. 2011; 659(2-3): 169-176. [CrossRef]
  • [42] Sohanaki H, Baluchnejadmojarad T, Nikbakht F, Roghani M. Pelargonidin improves passive avoidance task performance in a rat amyloid beta 25-35 model of Alzheimer's disease via estrogen receptor independent pathways. Acta Med Iran. 2016; 54(4): 245-250. [CrossRef]
  • [43] Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984; 11(1): 47-60. [CrossRef]
  • [44] D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001; 36(1): 60-90. [CrossRef]
  • [45] Shi L, Zhang Z, Li L, Hölscher C. A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by resensitizing insulin signaling in the Alzheimer icv stz rat model. Behav Brain Res. 2017; 1(327): 65-74. [CrossRef]
  • [46] Kumar M, Kaur D, Bansal N. Caffeic acid phenethyl ester (CAPE) prevents development of STZ-ICV induced dementia in rats. Pharmacogn Mag. 2017; 13(1): 10-15. [CrossRef]
  • [47] Rajasekar N, Nath C, Hanif K, Shukla R. Intranasal insulin improves cerebral blood flow, nrf-2 expression and BDNF in STZ (ICV)-induced memory impaired rats. Life Sci. 2017; 173: 1-10. [CrossRef]
  • [48] Agrawal R, Mishra B, Tyagi E, Nath C, Shukla R. Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol Res. 2010; 61(3): 247-252. [CrossRef]
  • [49] Grifman M, Galyam N, Seidman S, Soreq H. Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc Natl Acad Sci USA. 1998; 95(23): 13935-13940. [CrossRef]
  • [50] Garcia RR, Montiel JF, Villalon AU, Gatica MA, Aboitiz F. AChE-rich magnopyramidal neurons have a left-right size asymmetry in Broca's area. Brain Res. 2004; 1026(2): 313-316. [CrossRef]
  • [51] Cottingham MG, Hollinshead MS, Vaux DJ. Amyloid fibril formation by a synthetic peptide from a region of human acetylcholinesterase that is homologous to the Alzheimer's amyloid-beta peptide. Biochemistry. 2002; 41(46): 13539- 13547. [CrossRef]
  • [52] Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC. Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol. 2004; 164(6): 2163-2174. [CrossRef]
  • [53] Dhingra D, Parle M, Kulkarni SK. Effect of combination of insulin with dextrose, D(-) fructose and diet on learning and memory in mice. Indian J Pharmacol. 2003; 35: 151-156.
  • [54] Sharma B, Singh N, Singh M. Modulation of celecoxib- and streptozotocin-induced experimental dementia of Alzheimer's disease by pitavastatin and donepezil. J Psychopharmacol. 2008; 22(2): 162-171. [CrossRef]
  • [55] Itoh J, Nabeshima T, Kameyama T. Utility of an elevated plus-maze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology. 1990; 101(1): 27-33. [CrossRef]
  • 56] Komoroski B, Vachharajani N, Boulton D, Kornhauser D, Geraldes M, Li L, Pfister M. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther. 2009; 85(5): 520-526. [CrossRef]
  • [57] List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009; 32(4): 650-657. [CrossRef]
  • [58] Sachdeva AK, Misra S, Pal Kaur I, Chopra K. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: Behavioral and biochemical evidence. Eur J Pharmacol. 2015; 747(15): 132-140. [CrossRef]
  • [59] Gutierres JM, Carvalho FB, Schetinger MR, Marisco P, Agostinho Morsch VM, Mazzanti CM, Bogo M, Bonan CD, Spanevello R. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer's type. Life Sci. 2014; 96(1-2): 7-17. [CrossRef]
  • [60] Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol. 2019; 1916: 99-103. [CrossRef]
  • [61] Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc. 2006; 1(3): 1306-1311. [CrossRef]
APA HAZAR-YAVUZ A, YILDIZ S, KAYA R, CAM M, Kabasakal L (2022). Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. , 298 - 310. 10.29228/jrp.128
Chicago HAZAR-YAVUZ Ayse Nur,YILDIZ Sila,KAYA Rumeysa KELES,CAM Muhammet Emin,Kabasakal Levent Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. (2022): 298 - 310. 10.29228/jrp.128
MLA HAZAR-YAVUZ Ayse Nur,YILDIZ Sila,KAYA Rumeysa KELES,CAM Muhammet Emin,Kabasakal Levent Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. , 2022, ss.298 - 310. 10.29228/jrp.128
AMA HAZAR-YAVUZ A,YILDIZ S,KAYA R,CAM M,Kabasakal L Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. . 2022; 298 - 310. 10.29228/jrp.128
Vancouver HAZAR-YAVUZ A,YILDIZ S,KAYA R,CAM M,Kabasakal L Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. . 2022; 298 - 310. 10.29228/jrp.128
IEEE HAZAR-YAVUZ A,YILDIZ S,KAYA R,CAM M,Kabasakal L "Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model." , ss.298 - 310, 2022. 10.29228/jrp.128
ISNAD HAZAR-YAVUZ, Ayse Nur vd. "Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model". (2022), 298-310. https://doi.org/10.29228/jrp.128
APA HAZAR-YAVUZ A, YILDIZ S, KAYA R, CAM M, Kabasakal L (2022). Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. Journal of research in pharmacy (online), 26(2), 298 - 310. 10.29228/jrp.128
Chicago HAZAR-YAVUZ Ayse Nur,YILDIZ Sila,KAYA Rumeysa KELES,CAM Muhammet Emin,Kabasakal Levent Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. Journal of research in pharmacy (online) 26, no.2 (2022): 298 - 310. 10.29228/jrp.128
MLA HAZAR-YAVUZ Ayse Nur,YILDIZ Sila,KAYA Rumeysa KELES,CAM Muhammet Emin,Kabasakal Levent Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. Journal of research in pharmacy (online), vol.26, no.2, 2022, ss.298 - 310. 10.29228/jrp.128
AMA HAZAR-YAVUZ A,YILDIZ S,KAYA R,CAM M,Kabasakal L Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. Journal of research in pharmacy (online). 2022; 26(2): 298 - 310. 10.29228/jrp.128
Vancouver HAZAR-YAVUZ A,YILDIZ S,KAYA R,CAM M,Kabasakal L Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. Journal of research in pharmacy (online). 2022; 26(2): 298 - 310. 10.29228/jrp.128
IEEE HAZAR-YAVUZ A,YILDIZ S,KAYA R,CAM M,Kabasakal L "Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model." Journal of research in pharmacy (online), 26, ss.298 - 310, 2022. 10.29228/jrp.128
ISNAD HAZAR-YAVUZ, Ayse Nur vd. "Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model". Journal of research in pharmacy (online) 26/2 (2022), 298-310. https://doi.org/10.29228/jrp.128