Yıl: 2022 Cilt: 26 Sayı: 2 Sayfa Aralığı: 311 - 324 Metin Dili: İngilizce DOI: 10.29228/jrp.129 İndeks Tarihi: 07-06-2022

Polymer–matrix composites

Öz:
The aim of this study is to determine whether Platanus orientalis (PO) which has anti-inflammatory, antioxidant and diuretic properties and used in the treatment of kidney stones as traditional folk medicine, will reduce or prevent the stone formation in the urinary system. To simulate the urolithiasis model 0.75% ethylene glycol (EG) and 1% ammonium chloride (AC) were applied to Sprague-Dawley rats. The rats were divided into four groups (n=8). The control group was given standard drinking water for 5 weeks. EG group received 0.75% EG in their drinking water containing 0.75% EG and 1% AC. PO extract (100 mg/kg) was given orally for 5 weeks to the preventive group and for last 2 weeks to the therapeutic group, respectively. At the end of experiment, 24-hour urine and kidney samples were obtained. In urine samples, calcium and citrate levels were decreased and oxalate level was increased in the EG group. In kidney samples myeloperoxidase, caspase-3, N-acetyl-β-glycosaminidase (NAG) activities, malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), tumor necrosis factor-α and interleukin-1β levels were increased while superoxide dismutase activity and glutathione levels were decreased in the EG group. These biochemical parameters returned to control levels in both PO treatment groups. Histological findings also correlate with these results. Our findings are suggested that PO treatments is effective in both preventive and therapeutic groups.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Liu Q, Liu Y, Guan X, Wu J, He Z, Kang J, Tao Z, Deng Y. Effect of M2 macrophages on injury and apoptosis of renal tubular epithelial cells induced by calcium oxalate crystals. Kidney Blood Press Res. 2019; 44: 777-791. [CrossRef]
  • [2] Ziemba JB, Matlaga BR. Epidemiology and economics of nephrolithiasis. Investig Clin Urol. 2017; 58: 299-306. [CrossRef]
  • [3] Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T. EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol. 2016; 69: 468-474. [CrossRef]
  • [4] Park S, Pearle MS. Pathophysiology and management of calcium stones. Urol Clin North Am. 2007; 34: 323-334. [CrossRef]
  • [5] Shin S, Srivastava A, Alli NA, Bandyopadhyay BC. Confounding risk factors and preventative measures driving nephrolithiasis global makeup. World J Nephrol. 2018; 7: 129-142. [CrossRef]
  • [6] Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013; 2013: 292953. [CrossRef]
  • [7] Thamilselvan S, Hackett RL, Khan SR. Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol. 1997; 157: 1059-1063. [CrossRef]
  • [8] Aggarwal D, Gautam D, Sharma M, Singla SK. Bergenin attenuates renal injury by reversing mitochondrial dysfunction in ethylene glycol induced hyperoxaluric rat model. Eur J Pharmacol. 2016; 791: 611-621. [CrossRef]
  • [9] Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O, Tiselius HG. Kidney stones. Nat Rev Dis Primers. 2016; 2: 16008. [CrossRef]
  • [10] Fontenelle LF, Sarti TD. Kidney Stones: treatment and prevention. Am Fam Physician. 2019; 99: 490-496.
  • [11] Ngo TC, Assimos DG. Uric acid nephrolithiasis: recent progress and future directions. Rev Urol. 2007; 9: 17-27.
  • [12] Itoh Y, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K. Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J Urol. 2005; 173: 271-275. [CrossRef]
  • [13] Rathod NR, Biswas D, Chitme HR, Ratna S, Muchandi IS, Chandra R. Anti-urolithiatic effects of Punica granatum in male rats. J Ethnopharmacol. 2012; 140: 234-238. [CrossRef]
  • [14] Al-Yousofy F, Gumaih H, Ibrahim H, Alasbahy A. Parsley! Mechanism as antiurolithiasis remedy. Am J Clin Exp Urol. 2017; 5: 55-62.
  • [15] Bawari S, Sah AN, Tewari D. Anticalcifying effect of Daucus carota in experimental urolithiasis in Wistar rats. J Ayurveda Integr Med. 2020; 11: 308-315. [CrossRef]
  • [16] Keleş R, Sen A, Ertas B, Kayalı D, Eker P, Sener TE, Dogan A, Cetinel S, Sener G. The effects of Urtica dioica L. ethanolic extract against urinary calculi in rats. Marmara Pharm J. 2020; 24: 205-217. [CrossRef]
  • [17] Agawane SB, Gupta VS, Kulkarni MJ, Bhattacharya AK, Koratkar SS, Rao VK. Patho-physiological evaluation of Duranta erecta for the treatment of urolithiasis. J Ayurveda Integr Med. 2019; 10: 4-11. [CrossRef]
  • [18] Tuzlaci, Türkiye'nin Geleneksel İlaç Bitkileri, Istanbul Medikal Saglik ve Yayincilik Hiz. Ltd. Şti., Istanbul, 2016.
  • [19] Haider S, Nazreen S, Alam MM, Hamid H, Alam MS. Anti-inflammatory and anti-nociceptive activities of Platanus orientalis Linn. and its ulcerogenic risk evaluation. J Ethnopharmacol. 2012; 143: 236-240. [CrossRef]
  • [20] Tetik F, Civelek S, Cakilcioglu U. Traditional uses of some medicinal plants in Malatya (Turkey). J Ethnopharmacol. 2013; 146: 331-346. [CrossRef]
  • [21] Sargın SA, Akcicek E, Selvi S. An ethnobotanical study of medicinal plants used by the local people of Alaşehir (Manisa) in Turkey. J Ethnopharmacol. 2013; 150: 860-874. [CrossRef]
  • [22] Gao X, Ohlander M, Jeppsson N, Björk L, Trajkovski V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem. 2000; 48: 1485-1490. [CrossRef]
  • [23] Zhang R, Zeng Q, Deng Y, Zhang M, Wei Z, Zhang Y, Tang X. Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in Southern China. Food Chem. 2013; 136: 1169-1176. [CrossRef]
  • [24] Yıldırım A, Sen A, Dogan A, Bitis L. Antioxidant and anti-inflammatory activity of capitula, leaf and stem extracts of Tanacetum cilicicum (Boiss.) Grierson. Int J Second Metab. 2019; 6: 211-222. [CrossRef]
  • [25] Babu NP, Pandikumar P, Ignacimuthu S. Lysosomal membrane stabilization and anti-inflammatory activity of Clerodendrum phlomidis L.f., a traditional medicinal plant. J Ethnopharmacol. 2011; 135: 779-785. [CrossRef]
  • [26] Zou Y, Chang SKC, Gu Y, Qian SY. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J Agric Food Chem. 2011; 59: 2268-2276. [CrossRef]
  • [27] Bashir S, Gilani AH. Antiurolithic effect of berberine is mediated through multiple pathways. Eur J Pharmacol. 2011; 651: 168-175. [CrossRef]
  • [28] Grimes A. Red Cell Metabolism. A Manual of Biochemical Methods. 3rd Edition. Biochemical Society Transactions. 1985; 13: 1259-1259. [CrossRef]
  • [29] Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods. 1990; 24: 285-295. [CrossRef]
  • [30] Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986; 82: 512-520. [CrossRef]
  • [31] Alelign T, Petros B. Kidney stone disease: an update on current concepts. Adv Urol. 2018; 2018: 3068365. [CrossRef]
  • [32] Sigurjonsdottir VK, Runolfsdottir HL, Indridason OS, Palsson R, Edvardsson VO. Impact of nephrolithiasis on kidney function. BMC Nephrol. 2015; 16: 149. [CrossRef]
  • [33] Nojaba L, Guzman N, Nephrolithiasis, StatPearls, StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC., Treasure Island (FL), 2021.
  • [34] Al-Attar AM. Antilithiatic influence of spirulina on ethylene glycol-induced nephrolithiasis in male rats. Am J Biochem Biotechnol. 2010; 6. [CrossRef]
  • [35] Akram M, Idrees M. Progress and prospects in the management of kidney stones and developments in phytotherapeutic modalities. Int J Immunopathol Pharmacol. 2019; 33: 2058738419848220. [CrossRef]
  • [36] Dogan A, Anuk OO. Investigation of the phytochemical composition and antioxidant properties of chinar (Platanus orientalis L.) leaf infusion against ethanol-induced oxidative stress in rats. Mol Biol Rep. 2019; 46: 3049-3061. [CrossRef]
  • [37] Ahmed S, Hasan MM, Khan H, Mahmood ZA, Patel S. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation. Biomed Pharmacother. 2018; 106: 1292-1299. [CrossRef]
  • [38] El-Alfy TS, El-Gohary HMA, Sokkar NM, Sleem AA, Al-Mahdy DA. Phenolic constituents of Platanus orientalis L. leaves. Nat Prod Commun. 2008; 3: 199-203. [CrossRef]
  • [39] Qin B, Wang Q, Lu Y, Li C, Hu H, Zhang J, Wang Y, Zhu J, Zhu Y, Xun Y, Wang S. Losartan ameliorates calcium oxalate-induced elevation of stone-related proteins in renal tubular cells by inhibiting NADPH oxidase and oxidative stress. Oxid Med Cell Longev. 2018; 2018: 1271864. [CrossRef]
  • [40] Khan SR. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol. 2014; 3: 256- 276. [CrossRef]
  • [41] Khan SR. Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res. 2005; 33: 349-357. [CrossRef]
  • [42] Huang HS, Ma MC, Chen J, Chen CF. Changes in the oxidant-antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol. 2002; 167: 2584-2593. [CrossRef]
  • [43] Sharma M, Naura AS, Singla SK. Modulatory effect of 4-phenyl butyric acid on hyperoxaluria-induced renal injury and inflammation. Mol Cell Biochem. 2019; 451: 185-196. [CrossRef]
  • [44] Joshi S, Khan SR. Opportunities for future therapeutic interventions for hyperoxaluria: targeting oxidative stress. Expert Opin Ther Targets. 2019; 23: 379-391. [CrossRef]
  • [45] Yasui T, Okada A, Hamamoto S, Ando R, Taguchi K, Tozawa K, Kohri K. Pathophysiology-based treatment of urolithiasis. Int J Urol. 2017; 24: 32-38. [CrossRef]
  • [46] Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010; 4: 118-126. [CrossRef]
  • [47] Ghale-Salimi MY, Eidi M, Ghaemi N, Khavari-Nejad RA. Antiurolithiatic effect of the taraxasterol on ethylene glycol induced kidney calculi in male rats. Urolithiasis. 2018; 46: 419-428. [CrossRef]
  • [48] Wang Z, Bai Y, Wang J, Wang J. The preventive and therapeutic effects of α-lipoic acid on ethylene glycol-induced calcium oxalate deposition in rats. Int Urol Nephrol. 2020; 52: 1227-1234. [CrossRef]
  • [49] Wang N, Zhang D, Zhang YT, Xu W, Wang YS, Zhong PP, Jia TZ, Xiu YF. Endothelium corneum Gigeriae galli extract inhibits calcium oxalate formation and exerts anti-urolithic effects. J Ethnopharmacol. 2019; 231: 80-89. [CrossRef]
  • [50] Anundi I, Högberg J, Stead AH. Glutathione depletion in isolated hepatocytes: its relation to lipid peroxidation and cell damage. Acta Pharmacol Toxicol. (Copenh) 1979; 45: 45-51. [CrossRef]
  • [51] Liu YD, Yu SL, Wang R, Liu JN, Jin YS, Li YF, An RH. Rosiglitazone suppresses calcium oxalate crystal binding and oxalate-induced oxidative stress in renal epithelial cells by promoting PPAR-γ activation and subsequent regulation of TGF-β1 and HGF expression. Oxid Med Cell Longev. 2019; 2019: 4826525. [CrossRef]
  • [52] Akkol EK, Dereli FTG, Taştan H, Sobarzo-Sánchez E, Khan H. Effect of Sorbus domestica and its active constituents in an experimental model of colitis rats induced by acetic acid. J Ethnopharmacol. 2020; 251: 112521. [CrossRef]
  • [53] Sun Y, Liu Y, Guan X, Kang J, Wang X, Liu Q, Li D, Xu H, Tao Z, Deng Y. Atorvastatin inhibits renal inflammatory response induced by calcium oxalate crystals via inhibiting the activation of TLR4/NF-κB and NLRP3 inflammasome. IUBMB Life. 2020; 72: 1065-1074. [CrossRef]
  • [54] Washino S, Hosohata K, Miyagawa T. Roles played by biomarkers of kidney injury in patients with upper urinary tract obstruction. Int J Mol Sci. 2020; 21. [CrossRef]
  • [55] Tungsanga K, Sriboonlue P, Futrakul P, Yachantha C, Tosukhowong P. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res. 2005; 33: 65-69. [CrossRef] [56] De Martinis BS, Bianchi MDLP. Effect of vitamin C supplementation against cisplatin-induced toxicity and oxidative DNA damage in rats. Pharmacol Res. 2001; 44: 317-320. [CrossRef]
  • [57] Tsujihata M, Momohara C, Yoshioka I, Tsujimura A, Nonomura N, Okuyama A. Atorvastatin inhibits renal crystal retention in a rat stone forming model. J Urol. 2008; 180: 2212-2217. [CrossRef]
  • [58] Sener TE, Sener G, Cevik O, Eker P, Cetinel S, Traxer O, Tanidir Y, Akbal C. The effects of melatonin on ethylene glycol-induced nephrolithiasis: role on osteopontin mRNA gene expression. Urology. 2017; 99: 287.e289-287.e215. [CrossRef]
  • [59] Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, Miranda-Díaz AG. Oxidative stress, apoptosis, and
APA ADAKUL B, ŞEN A, ŞENER T, ERDOĞAN Ö, ÇEVİK Ö, EKER P, ÇETİNEL Ş, BÖLÜKBAŞI F, ŞENKARDEŞ İ, ERTAS B, ŞENER G (2022). Polymer–matrix composites. , 311 - 324. 10.29228/jrp.129
Chicago ADAKUL Betül AYAZ,ŞEN ALİ,ŞENER T. Emre,ERDOĞAN ÖMER,ÇEVİK Özge,EKER Pınar,ÇETİNEL Şule,BÖLÜKBAŞI Furkan,ŞENKARDEŞ İsmail,ERTAS BÜSRA,ŞENER Göksel Polymer–matrix composites. (2022): 311 - 324. 10.29228/jrp.129
MLA ADAKUL Betül AYAZ,ŞEN ALİ,ŞENER T. Emre,ERDOĞAN ÖMER,ÇEVİK Özge,EKER Pınar,ÇETİNEL Şule,BÖLÜKBAŞI Furkan,ŞENKARDEŞ İsmail,ERTAS BÜSRA,ŞENER Göksel Polymer–matrix composites. , 2022, ss.311 - 324. 10.29228/jrp.129
AMA ADAKUL B,ŞEN A,ŞENER T,ERDOĞAN Ö,ÇEVİK Ö,EKER P,ÇETİNEL Ş,BÖLÜKBAŞI F,ŞENKARDEŞ İ,ERTAS B,ŞENER G Polymer–matrix composites. . 2022; 311 - 324. 10.29228/jrp.129
Vancouver ADAKUL B,ŞEN A,ŞENER T,ERDOĞAN Ö,ÇEVİK Ö,EKER P,ÇETİNEL Ş,BÖLÜKBAŞI F,ŞENKARDEŞ İ,ERTAS B,ŞENER G Polymer–matrix composites. . 2022; 311 - 324. 10.29228/jrp.129
IEEE ADAKUL B,ŞEN A,ŞENER T,ERDOĞAN Ö,ÇEVİK Ö,EKER P,ÇETİNEL Ş,BÖLÜKBAŞI F,ŞENKARDEŞ İ,ERTAS B,ŞENER G "Polymer–matrix composites." , ss.311 - 324, 2022. 10.29228/jrp.129
ISNAD ADAKUL, Betül AYAZ vd. "Polymer–matrix composites". (2022), 311-324. https://doi.org/10.29228/jrp.129
APA ADAKUL B, ŞEN A, ŞENER T, ERDOĞAN Ö, ÇEVİK Ö, EKER P, ÇETİNEL Ş, BÖLÜKBAŞI F, ŞENKARDEŞ İ, ERTAS B, ŞENER G (2022). Polymer–matrix composites. Journal of research in pharmacy (online), 26(2), 311 - 324. 10.29228/jrp.129
Chicago ADAKUL Betül AYAZ,ŞEN ALİ,ŞENER T. Emre,ERDOĞAN ÖMER,ÇEVİK Özge,EKER Pınar,ÇETİNEL Şule,BÖLÜKBAŞI Furkan,ŞENKARDEŞ İsmail,ERTAS BÜSRA,ŞENER Göksel Polymer–matrix composites. Journal of research in pharmacy (online) 26, no.2 (2022): 311 - 324. 10.29228/jrp.129
MLA ADAKUL Betül AYAZ,ŞEN ALİ,ŞENER T. Emre,ERDOĞAN ÖMER,ÇEVİK Özge,EKER Pınar,ÇETİNEL Şule,BÖLÜKBAŞI Furkan,ŞENKARDEŞ İsmail,ERTAS BÜSRA,ŞENER Göksel Polymer–matrix composites. Journal of research in pharmacy (online), vol.26, no.2, 2022, ss.311 - 324. 10.29228/jrp.129
AMA ADAKUL B,ŞEN A,ŞENER T,ERDOĞAN Ö,ÇEVİK Ö,EKER P,ÇETİNEL Ş,BÖLÜKBAŞI F,ŞENKARDEŞ İ,ERTAS B,ŞENER G Polymer–matrix composites. Journal of research in pharmacy (online). 2022; 26(2): 311 - 324. 10.29228/jrp.129
Vancouver ADAKUL B,ŞEN A,ŞENER T,ERDOĞAN Ö,ÇEVİK Ö,EKER P,ÇETİNEL Ş,BÖLÜKBAŞI F,ŞENKARDEŞ İ,ERTAS B,ŞENER G Polymer–matrix composites. Journal of research in pharmacy (online). 2022; 26(2): 311 - 324. 10.29228/jrp.129
IEEE ADAKUL B,ŞEN A,ŞENER T,ERDOĞAN Ö,ÇEVİK Ö,EKER P,ÇETİNEL Ş,BÖLÜKBAŞI F,ŞENKARDEŞ İ,ERTAS B,ŞENER G "Polymer–matrix composites." Journal of research in pharmacy (online), 26, ss.311 - 324, 2022. 10.29228/jrp.129
ISNAD ADAKUL, Betül AYAZ vd. "Polymer–matrix composites". Journal of research in pharmacy (online) 26/2 (2022), 311-324. https://doi.org/10.29228/jrp.129