Yıl: 2021 Cilt: 14 Sayı: 3 Sayfa Aralığı: 255 - 269 Metin Dili: İngilizce DOI: 10.25135/acg.oc.108.2107.2126 İndeks Tarihi: 08-06-2022

Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates

Öz:
Novel monopeptide-anthraquinone conjugates (1-16) were synthesized by the reaction of appropriate N-protected amino acid with 2-hydroxymethylanthraquinone in good or high yields. The structural elucidation of the new compounds was accomplished by 1H NMR, 13C NMR, MS, FT-IR spectroscopy and elemental analysis techniques. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was determined against two human (h) isoforms, hCA I and hCA II. While three of the sixteen compounds showed moderate in vitro carbonic anhydrase inhibitory properties against hCA II with inhibition constants in the micromolar level (43.5, 67.4 and 78.1 µM), they did not show inhibitory activity against hCA I up to 100 µM concentration. The antioxidant abilities of the compounds were determined using the 1,1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging method, ferric ion reducing assay and metal chelation methods. While a small amount of antioxidant activity was observed according to the DPPH and ferric ion reducing power assay methods, none of the compounds showed antioxidant properties according to the metal chelating activity method at the concentrations studied.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Park, J.; Park, S.; Park, J. Synthesis of new dye compounds based on anthraquinone moiety for color filter colorants. Mol. Cryst. Liq. Cryst. 2013, 579, 110-114.
  • [2] Kaim, W.; Lahiri, G.K. The coordination potential of indigo, anthraquinone and related redox-active dyes. Coord. Chem. Rev. 2019, 393, 1-8.
  • [3] Langdon-Jones, E.E.; Pope, S.J.A. The coordination chemistry of substituted anthraquinones: Developments and applications. Coord. Chem. Rev. 2014, 269, 32-53.
  • [4] Peixoto, D.; Figueiredo, M.; Malta, G.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R.; Barroso, S.; Carvalho, A.L.; Afonso, C.A.M.; Ferreira, L.M.; Paula S. Branco, P.S. Synthesis, cytotoxicity evaluation in human cell lines and in vitro DNA interaction of a hetero-arylidene-9(10H)-anthrone. Eur. J. Org. Chem. 2018, 545-549.
  • [5] Dibble, D.; Kurakake, R.; Wardrip, A.G.; Bartlett, A.; Lopez, R.; Linares, J.A.; Firstman, M.; Schmidt, A.M.; Umerani, M.J.; Gorodetsky, A.A. Aza-Diels-Alder approach to diquinolineanthracene and polydiquinolineanthracene derivatives. Org. Lett. 2018, 20, 502-505.
  • [6] Qiao, M.; Liu, B.; Zhao, X.; Gong, Y.; Wang, Y.; Cao, W. Formation of oxygenated polycyclic aromatic hydrocarbons by photoelectrocatalysis using TiO2 nanotubes. RSC Adv. 2017, 7, 51678-51686.
  • [7] Bardagi, J.I.; Ghosh, I.; Schmalzbauer, M.; Ghosh, T.; König, B. Anthraquinones as photoredox catalysts for the reductive activation of aryl halides. Eur. J. Org. Chem. 2018, 34-40.
  • [8] Bartels, P.L.; Stodola, J.L.; Burgers, P.M.J.; Barton, J.K. A redox role for the [4Fe4S] cluster of yeast DNA polymerase δ. J. Am. Chem. Soc. 2017, 139, 18339-18348.
  • [9] Inagawa, H.; Uchida, S.; Yamaguchi, E.; Itoh, A. Metal-free oxidative amidation of aromatic aldehydes using an anthraquinone-based organophotocatalyst. Asian J. Org. Chem. 2019, 8, 1411-1414.
  • [10] Petroselli, M.; Mosca, S.; Martí-Rujas, J.; Comelli.; Cametti, M. Mixed stacked charge-transfer π-organic materials based on anthracenyl boronic acid. Eur. J. Org. Chem. 2017, 7190-7194.
  • [11] Hussein, Y.H.A.; Anderson, N.; Lian, T.T.; Abdou, I.M.; Strekowski, L.; Timoshchuk, V.A.; Vaghefi, M.M.; Thomas L. Netzel, T.L. Solvent and linker influences on AQ .--/dA .+ charge-transfer state energetics and dynamics in anthraquinonyl-linker-deoxyadenosine conjugates. J. Phys. Chem. A 2006, 110, 4320-8.
  • [12] Khankaew, S.; Mills, A.; Yusufu, D.; Wellsb, N.; Hodgenb, S.; Boonsupthipc, W.; Suppakula, P. Multifunctional anthraquinone-based sensors: UV, O2 and time. Sensors Actuators B. Chem. 2017, 238, 76-82.
  • [13] Liu, W.; Dong, H.; Zhang, L.; Tian, Y. Development of an efficient biosensor for the In vivo monitoring of Cu+ and pH in the brain: Rational design and synthesis of recognition molecules. Angew. Chem. Int. Ed. 2017, 56, 16328-16332.
  • [14] Xiang, W.; Song, Q.S.; Zhang, H.J.; Guo, S.P. Antimicrobial anthraquinones from Morinda angustifolia. Fitoterapia 2008, 79, 501-504.
  • [15] Bringmann, G.; Mutanyatta-Comar, J.; Maksimenka, K.; Wanjohi, J.M.; Heydenreich, M.; Brun, R.; Müller, W.E.G.; Peter, M.G.; Jacob O. Midiwo, J.O.; Yenesew, A. Joziknipholones A and B: The first dimeric phenylanthraquinones, from the roots of Bulbine frutescens. Chem. A Eur. J. 2008, 14, 1420- 1429
  • [16] Mishra, S.K.; Tiwari, S.; Shrivastava, A.; Srivastava, S.; Boudh, G.K.; Chourasia , S.K.; Chaturvedi, U.; Mir , S.S.; Saxena, A.K.; Bhatia, G.; Lakshmi, V. Antidyslipidemic effect and antioxidant activity of anthraquinone derivatives from Rheum emodi rhizomes in dyslipidemic rats. J. Nat. Med. 2014, 68, 363-371.
  • [17] Hsin, L.W.; Wang, H.P.; Kao, P.H.; Lee, O.; Chen, W.R.; Chen, H.W.; Guh, J.H.; Chan, Y.L.; His, C.P.; Yang, M.S.; Tsai-Kun Lic, .K.; Lee, C.H. Synthesis, DNA binding, and cytotoxicity of 1,4- bis(2-aminoethylamino)anthraquinone-amino acid conjugates. Bioorg. Med. Chem. 2008, 16, 1006-1014.
  • [18] Yan, Y.; Su, X.; Liang, Y.; Zhang, J.; Shi, C.; Lu, Y.; Gu, L.; Fu, L. Emodin azide methyl anthraquinone derivative triggers mitochondrial- dependent cell apoptosis involving in caspase-8-mediated Bid cleavage. Mol. Cancer. Ther. 2008, 7, 1688-1697.
  • [19] Lee, Y.K.; Bang, H.; Oh, J.B.; Whang, W.K. Bioassay-guided isolated compounds from morinda officinalis inhibit Alzheimer’s disease pathologies. Molecules 2017, 22, Article number 1638, 1-12.
  • [20] Seo, E. J.; Ngoc, T. M.; Lee, S. M.; Kim, Y. S.; Jung, Y. S. Chrysophanol-8-O-glucoside, an anthraquinone derivative in rhubarb, has antiplatelet and anticoagulant activities. J. Pharmacol. Sci. 2012, 118, 245–54..
  • [21] Barnard, D.L.; Huffman, J. H.; Morris, J.L.B.; Wood, S.G.; Hughes, B.G.; Sidwell, R. W. Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antiviral Res. 1992, 17, 63–77.
  • [22] Campora, M.; Francesconi, V.; Schenone, S.; Tasso, B.; Tonelli, M. Journey on naphthoquinone and anthraquinone derivatives: New insights in alzheimer’s disease. Pharmaceuticals. 2021, 14, 1–33..
  • [23] Routier, S.; Cotelle, N.; Catteau, J. P.; Bernier, J. L.; Waring, M.J.; Riou, J.F.; Bailly, C. Salenanthraquinone conjugates. Synthesis, DNA-binding and cleaving properties, effects on topoisomerases and cytotoxicity. Bioorg. Med. Chem. 1996, 4, 1185–96.
  • [24] Evans, L.W.; Bender, A.; Burnett, L.; Godoy, L.; Shen, Y.; Staten, D.; Zhou, T.; Angermann, J.E.; Ferguson, B.S. Emodin and emodin-rich rhubarb inhibits histone deacetylase (HDAC) activity and cardiac myocyte hypertrophy. J. Nutr. Biochem. 2020, 79, Article Number: 108339.
  • [25] Luo, M.; Cui, Z.; Huang, H.; Song, X.; Sun, A.; Dang, Y.; Lu, L.; JJu, J. Amino acid conjugated anthraquinones from the marine-derived fungus penicillium sp. SCSIO sof101. J. Nat. Prod. 2017, 80, 1668-1673.
  • [26] Zagotto, G.; Sissi, C.; Lucatello, L.; Pivetta, C.; Cadamuro, S.A.; Fox, K.R.; Neidle, S.; Palumbo, M. Aminoacyl-anthraquinone conjugates as telomerase inhibitors: Synthesis, biophysical and biological evaluation. J. Med. Chem. 2008, 51, 5566-5574.
  • [27] Yuan, C.; He, Q.; Song, S.; Zhang, X.; Miao, Z.; Yang, C. One Pot and Metal-Free Approach to 3-(2- Hydroxybenzoyl)-1-aza- anthraquinones. Molecules 2019, 24, Article Number: 3017.
  • [28] Khalifah, R.G. The Carbon dioxide hydration activity of carbonic anhydrase. J. Biol. Chem. 1971, 246(8), 2561-2573.
  • [29] Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT - Food Sci. Technol. 2008, 41, 1060-1066.
  • [30] Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese J. Nutr. Diet. 1986, 44, 307–315.
  • [31] Carter, P. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem. 1971, 40, 450-458.
  • [32] El-Khatib, M.; Jauregui, L.; Tala, S.R.; Khelashvili, L.; Katritzky, A.R. Solution-phase synthesis of chiral O-acyl isodipeptides. Medchemcomm. 2011, 2, 1087-1092.
  • [33] Küçükbay, F.Z.; Küçükbay, H.; Tanc, M.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory properties of amino acid-coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties. J. Enzyme. Inhib. Med. Chem. 2016, 31, 198-202.
  • [34] Küçükbay, F.Z.; Küçükbay, H.; Tanc, M.; Supuran, C.T. Synthesis and carbonic anhydrase I, II, IV and XII inhibitory properties of N- protected amino acid – sulfonamide conjugates. J. Enzyme Inhib. Med. Chem. 2016, 31, 1476-1483.
  • [35] Buǧday, N.; Küçükbay, F.Z.; Apohan, E.; Küçükbay, H.; Serindaǧ, A.; Yeşilada, Ö. Synthesis and evaluation of novel benzimidazole conjugates incorporating amino acids and dipeptide moieties. Lett. Org. Chem. 2017, 14, 198-206.
  • [36] Küçükbay, H.; Buğday, N.; Küçükbay, F. Z.; Berrino, E.; Bartolucci, G.; Prete, S.D.; Capasso, C.; Supuran.; C.T. Synthesis and carbonic anhydrase inhibitory properties of novel 4-(2- aminoethyl)benzenesulfonamide-dipeptide conjugates. Bioorg. Chem. 2019, 83, 414-423.
  • [37] Katritzky, A .R.; Singh, S. A.; Haase, D. N.; Yoshioka, M. N-(Fmoc-α-aminoacyl)benzotriazoles: versatile synthetic reagents from proteinogenic amino acids. Arkivoc 2009, (viii), 47-56.
  • [38] Merrifield, B. Solid phase synthesis. Science 1986, 232, 341-347.
  • [39] Khalifah, R. G. Edsall, J. Carbon dioxide hydration activity of carbonic anhydrase: kinetics of alkylated anhydrases B and C from humans (metalloenzymes-isoenzymes-active sites-mechanism). Proc. Natl. Acad. Sci. USA 1972, 69, 172-176.
  • [40] Mincione, F.; Starnotti, M.; Menabuoni, L.; Scozzafava, A.; Casini, A.; Supuran, C.T. arbonic anhydrase inhibitors: 4-Sulfamoyl-benzenecarboxamides and 4-chloro-3-sulfamoyl-benzenecarboxamides with strong topical antiglaucoma properties. Bioorg. Med. Chem. Lett. 2001, 11, 1787-1791.
  • [41] Prete, S. D.; Vullo, D.; Luca, D. V.; AlOthman, Z.; Osman, S .M.; Supuran, C. T.; Capasso, C.. Biochemical characterization of recombinant β-carbonic anhydrase (PgiCAb) identified in the genome of the oral pathogenic bacterium Porphyromonas gingivalis. J. Enzyme Inhib. Med. Chem. 2015, 30, 366- 370.
  • [42] Supuran, C. T.; Scozzafava, A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg. Med. Chem. 2007, 15, 4336-4350.
  • [43] Maresca, A.; Vullo, D.; Scozzafava, A.; Manole, G.; Supuran, C. T. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids. J. Enzyme Inhib. Med. Chem. 2014, 28, 392-396.
  • [44] Scozzafava, A.; Passaponti, M.; Supuran, C. T.; Gülçin, I. Carbonic anhydrase inhibitors: Guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX and XII). J. Enzyme Inhib. Med. Chem. 2015, 30, 586-591.
  • [45] Küçükbay, H.; Buğday, N.; Küçükbay, F. Z.; Angeli, A.; Bartolucci, G.; Supuran, C. T.;Synthesis and human carbonic anhydrase I, II, VA, and XII inhibition with novel amino acid–sulphonamide conjugates J. Enzyme Inhib. Med. Chem. 2020, 35, 489-497.
  • [46] Bogdanowicz, R.; Sawczak, M.; Niedzialkowski, P.; Zieba, P.; Finke, B.; Ryl, J.; Ossowski, T. Direct amination of boron-doped diamond by plasma polymerized allylamine film. Phys. Status Solidi A. 2014, 211, 2319-327.
  • [47] Kemp, D. S.; Reczek, J. New protective groups for peptide synthesis--III the maq ester group mild reductive cleavage of 2-acyloxymethyleneanthraquinones. Tetrahedron Lett. 1977, 18, 1031–1034.
  • [48] Küçükbay, H.; Gönül, Z.; Küçükbay, F. Z.; Tekin, Z.; Angeli, A.; Bartolucci, G.; Supuran, C. T.; Tatlıcı, E.; Apohan, E.; Yeşilada, Ö. Synthesis of new 7-amino-3,4-dihydroquinolin-2(1H)-one-peptide derivatives and their carbonic anhydrase enzyme inhibition, antioxidant and cytotoxic activities. Arch. Pharm. (Weinheim). 2021, (July), Article Number: e2100122.
APA Kucukbay H, Parladı F, Küçükbay F, angeli a, Bartolucci G, Supuran C (2021). Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. , 255 - 269. 10.25135/acg.oc.108.2107.2126
Chicago Kucukbay Hasan,Parladı Fatma Müzeyyen,Küçükbay F. Zehra,angeli andrea,Bartolucci Gianluca,Supuran Claudiu Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. (2021): 255 - 269. 10.25135/acg.oc.108.2107.2126
MLA Kucukbay Hasan,Parladı Fatma Müzeyyen,Küçükbay F. Zehra,angeli andrea,Bartolucci Gianluca,Supuran Claudiu Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. , 2021, ss.255 - 269. 10.25135/acg.oc.108.2107.2126
AMA Kucukbay H,Parladı F,Küçükbay F,angeli a,Bartolucci G,Supuran C Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. . 2021; 255 - 269. 10.25135/acg.oc.108.2107.2126
Vancouver Kucukbay H,Parladı F,Küçükbay F,angeli a,Bartolucci G,Supuran C Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. . 2021; 255 - 269. 10.25135/acg.oc.108.2107.2126
IEEE Kucukbay H,Parladı F,Küçükbay F,angeli a,Bartolucci G,Supuran C "Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates." , ss.255 - 269, 2021. 10.25135/acg.oc.108.2107.2126
ISNAD Kucukbay, Hasan vd. "Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates". (2021), 255-269. https://doi.org/10.25135/acg.oc.108.2107.2126
APA Kucukbay H, Parladı F, Küçükbay F, angeli a, Bartolucci G, Supuran C (2021). Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. Organic Communications, 14(3), 255 - 269. 10.25135/acg.oc.108.2107.2126
Chicago Kucukbay Hasan,Parladı Fatma Müzeyyen,Küçükbay F. Zehra,angeli andrea,Bartolucci Gianluca,Supuran Claudiu Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. Organic Communications 14, no.3 (2021): 255 - 269. 10.25135/acg.oc.108.2107.2126
MLA Kucukbay Hasan,Parladı Fatma Müzeyyen,Küçükbay F. Zehra,angeli andrea,Bartolucci Gianluca,Supuran Claudiu Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. Organic Communications, vol.14, no.3, 2021, ss.255 - 269. 10.25135/acg.oc.108.2107.2126
AMA Kucukbay H,Parladı F,Küçükbay F,angeli a,Bartolucci G,Supuran C Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. Organic Communications. 2021; 14(3): 255 - 269. 10.25135/acg.oc.108.2107.2126
Vancouver Kucukbay H,Parladı F,Küçükbay F,angeli a,Bartolucci G,Supuran C Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. Organic Communications. 2021; 14(3): 255 - 269. 10.25135/acg.oc.108.2107.2126
IEEE Kucukbay H,Parladı F,Küçükbay F,angeli a,Bartolucci G,Supuran C "Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates." Organic Communications, 14, ss.255 - 269, 2021. 10.25135/acg.oc.108.2107.2126
ISNAD Kucukbay, Hasan vd. "Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates". Organic Communications 14/3 (2021), 255-269. https://doi.org/10.25135/acg.oc.108.2107.2126