Yıl: 2022 Cilt: 26 Sayı: 3 Sayfa Aralığı: 444 - 450 Metin Dili: İngilizce DOI: 10.29228/jrp.141 İndeks Tarihi: 08-06-2022

Metal nanoparticles for miRNA detection

Öz:
Biosensing can be used for analysis, diagnosis and determination of biological target structures. But the improvement of sensitivity and sensing threshold is an important problem to overcome. It is possible to solve this problem with metal nanoparticles, in some linear response range while decreasing the threshold value. The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The article is divided into subsections on sensors based on nanoparticles made from Au, Cu and other metals for miRNA detection.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Mack GS. microRNA gets down to business. Nat Biotechnol 2007; 25:631–638. [Crossref]
  • [2] Azimzadeh M, Rahaie M, Nasirizadeh N, Daneshpour M, Naderi-Manesh H. Electrochemical miRNA Biosensors: The Benefits of Nanotechnology. Nanomed Res J 2017; 2:36–48 [Crossref]
  • [3] Cai H, Zhou H, Miao Y, Li N, Zhao L, Jia L. miRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. Lab Invest 2017; 97:530–542. [Crossref]
  • [4] Kilic T, Erdem A, Ozsoz M, Carrara S. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosens. Bioelectron. 2018;99: 525–546. [Crossref]
  • [5] Gupta VK, Arunima N, Singhal B, Agarwal S. Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb. Chem. &High Throughput Screen 2011;14: 284–302. [Crossref]
  • [6] Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S. Electrochemical analysis of some toxic metals by ion-selective electrodes. Crit. Rev. Anal. Chem. 2011;41: 282–313.[Crossref]
  • [7] Gupta VK, Karimi-Maleh H, Sadegh R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 2015;10 :303–316.
  • [8] Karthikeyan S, Gupta V, Boopathy R, Titus A, Sekaran G. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J. Mol. Liq. 2012;173:153–163. [Crossref]
  • [9] Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Gupta VK. Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 2015; 5: 18438-18450 [Crossref]
  • [10] Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 2014;48:210–217. [Crossref]
  • [11] Yola ML, Gupta VK, Eren T, Şen AE, Atar N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta 2014;120:204–211. [Crossref]
  • [12] Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res. 2015;54:3634–3639. [Crossref]
  • 13] Borah SB, Bora T, Baruah S, Dutta J. Heavy metal ion sensing in water using surface plasmon resonance of metallic nanostructures. Groundw. Sustain Dev. 2015;1:1–11. [Crossref]
  • [14] Gupta VK, Sethi B, Sharma R, Agarwal S, Bharti A. Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J. Mol. Liq. 2013;177: 114–118.[Crossref]
  • [15] Srivastava SK, Gupta VK, Jain S. PVC-based 2, 2, 2-cryptand sensor for zinc ions, Anal. Chem. 1996;68: 1272–1275. [Crossref]
  • [16] Gupta VK, Singh L, Singh R, Upadhyay N, Kaur S, Sethi B. A novel copper (II) selective sensor based on dimethyl 4, 4′(o-phenylene) bis (3-thioallophanate) in PVC matrix. J. Mol. Liq. 2012;174:11–16. [Crossref]
  • [17] Chah S, Yi J, Zare RN. Surface plasmon resonance analysis of aqueous mercuric ions. Sens. Actuators B Chem. 2004;99:216–222. [Crossref]
  • [18] Gupta VK, Kumar S, Singh R, Singh L, Shoora S, Sethi B. Cadmium (II) ion sensing through p-tert-butyl calix [6] arene based potentiometric sensor. J. Mol. Liq. 2014;195 : 65–68. [Crossref]
  • [19] Gupta VK, Mergu N, Kumawat LK, Singh AK. Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe. Sens. Actuators B Chem. 2015;207: 216–223. [Crossref]
  • [20] Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A. Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens. Actuators B Chem. 2012;161: 880–885. [Crossref]
  • [21] Kitenge D, Joshi RK, Hirai M, Kumar A. Nanostructured silver films for surface plasmon resonance-based gas sensors, IEEE Sens. J. 2009;9 : 1797–1801. [Crossref]
  • [22] Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev., 2007;107: 4797-4862. [Crossref]
  • [23] Su S, Cao W , Liu W , Lu Z, Zhu D , Chao J, Weng L, Wang L , Fan C , Wang L.Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. Biosensors and Bioelectronics. 2017; 94: 552-559 [Crossref]
  • [24] Chand R, Ramalingam S, Neethirajan S. 2D Transition-Metal Dichalcogenide MoS2 Based Novel Nanocomposite and Nanocarrier for Multiplex miRNAs Detection. Nanoscale 2018; 10: 8217-8225. [Crossref]
  • [25] Miao P, Zhang T, Xu J, Tang Y. Electrochemical Detection of miRNA Combining T7 Exonuclease-Assisted Cascade Signal Amplification and DNA-Templated Copper Nanoparticles. Anal. Chem. 2018; 90: 11154-11160. [Crossref]
  • [26] Xue S, Li Q, Wang L, You W, Zhang J, Che R. Copper- and Cobalt-Codoped CeO2 Nanospheres with Abundant Oxygen Vacancies as Highly Efficient Electrocatalysts for Dual-Mode Electrochemical Sensing of MicroRNA. Analytical Chemistry 2019; 91: 2659-2666 .[Crossref]
  • [27] Castañeda AD, Brenes NJ, Kondajji A, Crooks RM. Detection of microRNA by Electrocatalytic Amplification: A General Approach for Single-Particle Biosensing. J. Am. Chem. Soc. 2017; 139: 7657−7664. [Crossref]
  • [28] Zhang C, Li D, Li D, Wen K, Yang X, Zhu Y. Rolling circle amplification-mediated in situ synthesis of palladium nanoparticles for the ultrasensitive electrochemical detection of microRNA. Analyst 2019; 144: 3817-3825. [Crossref]
  • [29] Liu L, Wei Y, Jiao S, Zhu S, Liu X. A novel label-free strategy for the ultrasensitive miRNA-182 detection based on MoS2/Ti3C2 nanohybrids. Biosensors and Bioelectronics 2019;137: 45–51. [Crossref]
  • [30] Tian L, Qi J, Ma X, Wang X, Yao C, Song W, Wang Y. A facile DNA strand displacement reaction sensing strategy of electrochemical biosensor based on N-carboxymethyl chitosan/molybdenum carbide nanocomposite for microRNA-21 detection. Biosensors and Bioelectronics 2018; 122:43–50. [Crossref]
  • [31] Liu S, Yang Z, Chang Y, Chai Y, Yuan R. An enzyme-free electrochemical biosensor combining target recycling with Fe3O4/CeO2@Au nanocatalysts for microRNA-21 detection. Biosensors and Bioelectronics 2018; 119: 170–175. [Crossref]
  • [32] Zhang J, Wu DZ, Cai SX, Chen M, Xia YK, Wu F, Chen JH. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA. Biosensors and Bioelectronics 2016; 75: 452–457.[Crossref]
  • [33] Azzouzi S, Mak WC, Kor K, Turner APF, Ali MB, Beni V. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21. Biosensors and Bioelectronics 2017; 92: 154– 161.[Crossref]
  • [34] Chen YX, Zhang WC, Huang KJ, Zheng M, Mao YC. An electrochemical microRNA sensing platform based on tungsten diselenide nanosheets and competitive RNA-RNA hybridization. Analyst 2017; 142:4843-4851.[Crossref]
  • [35] Ma W, Situ B, Lv W, Li B, Yin X, Vadgama P, Zheng L, Wang W. Electrochemical determination of microRNAs based on isothermal strand-displacement polymerase reaction coupled with multienzyme functionalized magnetic microcarriers. Biosensors and Bioelectronics 2016; 80: 344–351. [Crossref]
  • [36] Gai P, Gu C, Li H, Sun X, Li F. Ultrasensitive Ratiometric Homogeneous Electrochemical MicroRNA Biosensing via Target-Triggered Ru(III) Release and Redox Recycling. Anal. Chem. 2017;89: 12293-12298.[Crossref]
  • [37] Islam MD, Masud MK, Nguyen NT, Gopalan V, Alamri HT, Alothman ZA, Hossain MSA, Yamauchi Y, Lam AK, Shiddiky MJA. Gold-loaded nanoporous ferric oxide nanocubes for electrocatalytic detection of microRNA at attomolar level. Biosensors and Bioelectronics 2018; 101: 275–281.[Crossref]
  • [38] Kong D, Bi S, Wang Z, Xia J, Zhang F. In Situ Growth of Three-Dimensional Graphene Films for Signal-On Electrochemical Biosensing of Various Analytes. Anal. Chem. 2016; 88: 10667-10674.[Crossref]
  • [39] Yuan YH, Wu YD, Chi BZ, Wen SH, Liang RP, Qiu JD. Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosensors and Bioelectronics 2017; 97: 325–331.[Crossref]
  • [40] Zhang K, Dong H, Dai W, Meng X, Lu H, Wu T, Zhang X. Fabricating Pt/Sn-In2O3 Nanoflower with Advanced Oxygen Reduction Reaction Performance for High-Sensitive microRNA Electrochemical Detection. Anal. Chem. 2017; 89: 648-655. [Crossref]
  • [41] Zhu D, Liu W, Zhao D, Hao Q, Li J, Huang J, Shi J, Chao J, Su S, Wang L. Label-free electrochemical sensing platform for microRNA-21 detection using thionine and gold nanoparticles co-functionalized MoS2 nanosheet. ACS Appl. Mater. Interfaces 2017; 9: 35597-35603. [Crossref]
  • [42] Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Hossein NM. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors and Bioelectronics 2016;77: 99-106. [Crossref]
  • [43] Heineman WR, Jensen WB, Leland CCJ. (1918–2005). Biosens. Bioelectron. 2006; 21 :1403–1404. [Crossref]
APA KARASAKAL A (2022). Metal nanoparticles for miRNA detection. , 444 - 450. 10.29228/jrp.141
Chicago KARASAKAL Ayca Metal nanoparticles for miRNA detection. (2022): 444 - 450. 10.29228/jrp.141
MLA KARASAKAL Ayca Metal nanoparticles for miRNA detection. , 2022, ss.444 - 450. 10.29228/jrp.141
AMA KARASAKAL A Metal nanoparticles for miRNA detection. . 2022; 444 - 450. 10.29228/jrp.141
Vancouver KARASAKAL A Metal nanoparticles for miRNA detection. . 2022; 444 - 450. 10.29228/jrp.141
IEEE KARASAKAL A "Metal nanoparticles for miRNA detection." , ss.444 - 450, 2022. 10.29228/jrp.141
ISNAD KARASAKAL, Ayca. "Metal nanoparticles for miRNA detection". (2022), 444-450. https://doi.org/10.29228/jrp.141
APA KARASAKAL A (2022). Metal nanoparticles for miRNA detection. Journal of research in pharmacy (online), 26(3), 444 - 450. 10.29228/jrp.141
Chicago KARASAKAL Ayca Metal nanoparticles for miRNA detection. Journal of research in pharmacy (online) 26, no.3 (2022): 444 - 450. 10.29228/jrp.141
MLA KARASAKAL Ayca Metal nanoparticles for miRNA detection. Journal of research in pharmacy (online), vol.26, no.3, 2022, ss.444 - 450. 10.29228/jrp.141
AMA KARASAKAL A Metal nanoparticles for miRNA detection. Journal of research in pharmacy (online). 2022; 26(3): 444 - 450. 10.29228/jrp.141
Vancouver KARASAKAL A Metal nanoparticles for miRNA detection. Journal of research in pharmacy (online). 2022; 26(3): 444 - 450. 10.29228/jrp.141
IEEE KARASAKAL A "Metal nanoparticles for miRNA detection." Journal of research in pharmacy (online), 26, ss.444 - 450, 2022. 10.29228/jrp.141
ISNAD KARASAKAL, Ayca. "Metal nanoparticles for miRNA detection". Journal of research in pharmacy (online) 26/3 (2022), 444-450. https://doi.org/10.29228/jrp.141