Yıl: 2021 Cilt: 51 Sayı: 3 Sayfa Aralığı: 169 - 176 Metin Dili: Türkçe DOI: 10.4274/tjo.galenos.2020.49107 İndeks Tarihi: 14-06-2022

Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı

Öz:
Fundus otofloresans (FOF), uzun yıllardır bilinen bir görüntüleme yöntemi olmasına karşın, son yıllarda gelişen teknolojiye bağlı olarak yeni görüntüleme cihazlarının kullanıma girmesi, oftalmoloji klinik pratiğinde retina hastalıklarının ayırıcı tanısı ve hastalık takibinde sıkça kullanılmasını sağlamıştır. Retinada bulunan lipofusin (LF) ve diğer floroforların yoğunluğu, FOF görüntüleri için belirleyici rol oynamaktadır. Kuru tip yaşa bağlı maküla dejeneresansında (YBMD), retina pigment epitel hücrelerinde artan LF, hiperotofloresansa, coğrafik atrofide retina pigment epitel hücresi kaybına bağlı azalan LF ise hipootofloresansa neden olmaktadır. Son yıllarda, YBMD’sinde FOF görüntülerinin, prognoz ile ilgili bilgi verdiği çalışmalar ile gösterilmiştir. Derlemede, FOF görüntülemenin, kuru tip YBMD’sinde kullanım yeri ve önemini aktarmak amaçlanmıştır.
Anahtar Kelime:

The Use of Fundus Autofluorescence in Dry Age-Related Macular Degeneration

Öz:
Fundus autofluorescence (FAF) has been a well-known imaging method for quite some time. However, with developing technologies and novel imaging devices, FAF is being used more often to diagnose and monitor retinal diseases. The density of lipofuscin (LF) and other fluorophores in the retina have a determining role in FAF images. In dry age-related macular degeneration (AMD), hyperautofluorescence is seen in cases of increasing LF in the retina pigment epithelium, whereas hypoautofluorescence is detected in decreasing LF resulting from geographic atrophy. In recent years, studies have shown that FAF images provide prognostic information in patients with AMD. This review aims to highlight the importance of FAF imaging in dry AMD.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Machemer R, Norton EW, Gass JD, Choromokos E. Pseudofluorescence--a problem in interpretation of fluorescein angiograms. Am J Ophthalmol. 1970;70:1-10.
  • Feeney L. The phagolysosomal system of the pigment epithelium. A key to retinal disease. Invest Ophthalmol. 1973;12:635-638.
  • Krebs I. Noemi Lois and John V. Forrester: Fundus autofluorescence. Graefes Arch Clin Exp Ophthalmol. 2011;249:309.
  • Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci. 1995;36:718-729.
  • Wing GL, Blanchard GC, Weiter JJ. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1978;17:601-607.
  • Eldred GE, Lasky MR. Retinal age-pigments generated by self-assembling lysosomotrophic detergents. Nature. 1993;361:724-726.
  • Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K. A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem. 2003;278:18207-18213.
  • Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845-881.
  • Lambris JD, Adamis AP. Inflammation and retinal disease: complement biology and pathology. In: Advances in Experimental Medicine and Biology. New York NY; Springer; 2010:63-74.
  • Katz ML, Eldred GE. Retinal light damage reduces autofluorescent pigment deposition in the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1989;30:37-43.
  • Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem. 2000;275:29354-29360.
  • Bindewald-Wittich A, Han M, Schmitz-Valckenberg S, Snyder SR, Giese G, Bille JF, Holz FG. Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:Sapphire laser. Invest Ophthalmol Vis Sci. 2006;47:4553-4557.
  • Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG. Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci. 2002;43:2435-2441.
  • Machemer R, Norton EW, Gass JD, Choromokos E. Pseudofluorescence-a problem in interpretation of fluorescein angiograms. Am J Ophthalmol. 1970;70:1-10.
  • Kitagawa K, Nishida S, Ogura Y. In vivo quantitation of autofluorescence in human retinal pigment epithelium. Ophthalmologica. 1989;199:116-121.
  • Ciardella A, Brown D. Wide field imaging. In: Agarwal A, ed. Fundus Fluorescein and Indocyanine Green Angiography: A Textbook and Atlas. New York; Slack Incorporated; 2007:79-83.
  • Witmer MT, Kiss S. Wide-field Imaging of the Retina. Surv Ophthalmol. 2013;58:143-154.
  • Friberg TR, Pandya A, Eller AW. Non-mydriatic panoramic fundus imaging using a non-contact scanning laser-based system. Ophthalmic Surg Lasers Imaging. 2003;34:488-497.
  • von Rückmann A, Schmidt KG, Fitzke FW, Bird AC, Jacobi KW. Dynamics of accumulation and degradation of lipofuscin in retinal pigment epithelium in senile macular degeneration. Klin Monbl Augenheilkd. 1998;213:32-37.
  • Schmitz-Valckenberg S, Fitzke FW. Imaging techniques of fundus autofluorescence. In: Lois N, Forrester JV, eds. Fundus autofluorescence. Philadelphia; Lippincott Williams & Wilkins; 2009:48-60.
  • Bellmann C, Rubin GS, Kabanarou SA, Bird AC, Fitzke FW. Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes. Br J Ophthalmol. 2003;87:1381-1386.
  • Nandakumar N, Buzney S, Weiter JJ. Lipofuscin and the principles of fundus autofluorescence: a review. Semin Ophthalmol. 2012;27:197-201.
  • Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: Visualization of ocular melanin. Invest Ophthalmol Vis Sci. 2006;47:3556-3564.
  • Ravera V, Giani A, Pellegrini M, Oldani M, Invernizzi A, Carini E, Cigada M, Bottoni F, Staurenghi G. Comparison among different diagnostic methods in the study of type and activity of choroidal neovascular membranes in age-related macular degeneration. Retina. 2019;39:281-287.
  • Pfau M, Goerdt L, Schmitz-Valckenberg S, Mauschitz MM, Mishra DK, Holz FG, Lindner M, Fleckenstein M. Green-light autofluorescence versus combined blue-light autofluorescence and near-infrared reflectance imaging in geographic atrophy secondary to age-related macular degeneration. Invest Opthalmol Vis Sci. 2017;58:121-130.
  • Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF. Fundus autofluorescence imaging: Review and perspectives. Retina. 2008;28:385-409.
  • Rothenbuehler SP, Wolf-Schnurrbusch UE, Wolf S. Macular pigment density at the site of altered fundus autofluorescence. Graefes Arch Clin Exp Ophthalmol. 2011;249:499-504.
  • Bone RA, Landrum JT, Cains A. Optical density spectra of the macular pigment in vivo and in vitro. Vision Res. 1992;32:105-110.
  • Chen SF, Chang Y, Wu JC. The spatial distribution of macular pigment in humans. Curr Eye Res. 2001;23:422-434.
  • 30. Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S; FAM-Study Group. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol. 2007;143:463-472.
  • 31. Küçükiba K, Erol N, Bilgin M. Yaşa Bağlı Makula Dejenerasyonu Olan Hastalarda Periferal Retina Değişikliklerinin Ultra-geniş Açılı Fundus Otofloresans Görüntüleri ile Değerlendirilmesi. Turk J Ophthalmol. 2020;50:6-14.
  • 32. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR; Beckman Initiative for Macular Research Classification Committee. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120:844-851.
  • 33. Batioglu F, Demirel S, Ozmert E, Oguz YG, Ozyol P. Autofluorescence patterns as a predictive factor for neovascularization. Optom Vis Sci. 2014;91:950-955.
  • 34. Bindewald A, Bird AC, Dandekar SS, Dolar-Szczasny J, Dreyhaupt J, Fitzke FW, Einbock W, Holz FG, Jorzik JJ, Keilhauer C, Lois N, Mlynski J, Pauleikhoff D, Staurenghi G, Wolf S. Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci. 2005;46:3309-3314.
  • 35. Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF. Subretinaldrusenoid deposits in non-neovascular age-related macular degeneration. Retina. 2013;33:265-276.
  • 36. Forte R, Querques G, Querques L, Massamba N, Letien V, Souied EH. Multimodal imaging of dry age-related macular degeneration. Acta Ophthalmol. 2012;90:281-287.
  • 37. Hogg RE, Silva R, Staurenghi G, Murphy G, Santos AR, Rosina C, Chakravarthy U. Clinical characteristics of reticular pseudodrusen in the fellow eye of patients with unilateral neovascular age-related macular degeneration. Ophthalmology. 2014;121:1748-1755.
  • 38. Knudtson MD, Klein R, Klein BE, Lee KE, Meuer SM, Tomany SC. Location of lesions associated with age-related maculopathy over a 10-year period: the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 2004;45:2135-2142.
  • 39. Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. Retina. 2013;33:490-497.
  • 40. Bingöl Kızıltunç P, Şermet F. Yaşa Bağlı Makülopatide Fundus Otofloresans Bulguları. Turk J Ophthalmol. 2018;48:304-308.
  • 41. Cachulo L, Silva R, Fonseca P, Pires I, Carvajal-Gonzales S, Bernardes R, Cunha-Vaz JG. Early markers of choroidal neovascularization in the fellow eye of patients with unilateral exudative age-related macular degeneration. Ophthalmologica. 2011;225:144-149.
  • 42. Mauschitz MM, Fonseca S, Chang P, Göbel AP, Fleckenstein M, Jaffe GJ, Holz FG, Schmitz-Valckenberg S; GAP Study Group.Topography of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53:4932-4939.
  • 43. Khanifar AA, Lederer DE, Ghodasra JH, Stinnett SS, Lee JJ, Cousins SW, Bearelly S. Comparison of color fundus photographs and fundus autofluorescence images in measuring geographic atrophy area. Retina 2012;32:1884-1891
  • 44. Olcay K, Çakır A, Sönmez M, Düzgün E, Yıldırım Y. Kuru Tip Yaşa Bağlı Makula Dejenerasyonu Hastalarında Otofloresans Görüntüleme Yöntemleri ile Lezyon Progresyon Hızının Değerlendirilmesi. Turk J Ophthalmol. 2015;45:235-238.
  • 45. Bearelly S, Khanifar AA, Lederer DE, Lee JJ, Ghodasra JH, Stinnett SS, Cousins SW. Use of fundus autofluorescnce images to predict geographic atrophy progression. Retina. 2011;31:81-86.
  • 46. Schmitz-Valckenberg S, Bültmann S, Dreyhaupt J, Bindewald A, Holz FG, Rohrschneider K. Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2004;45:4470-4476.
  • 47. Lois N, Owens SL, Coco R, Hopkins J, Fitzke FW, Bird AC. Fundus autofluorescence in patients with age-related macular degeneration and high risk of visual loss. Am J Ophthalmol. 2002;133:341-349.
  • 48. Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S; FAM-Study Group. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol. 2007;143:463-472.
  • 49. Batıoğlu F, Gedik Oğuz Y, Demirel S, Ozmert E. Geographic Atrophy Progression in Eyes with Age-Related Macular Degeneration: Role of Fundus Autofluorescence Patterns, Fellow Eye and Baseline Atrophy Area. Ophthalmic Res. 2014;52:53-59.
  • 50. Brar M, Kozak I, Cheng L, Bartsch DU, Yuson R, Nigam N, Oster SF, Mojana F, Freeman WR. Correlation between spectral domain optical coherence tomography and fundus autofluorescence at the margins of geographic atrophy. Am J Ophthalmol. 2009;148:439-444.
  • 51. Dysli C, Schuerch K, Escher P, Wolf S, Zinkernagel MS. Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci. 2018;59:1769-1778.
  • 52. Dysli C, Berger L, Wolf S, Zinkernagel MS. Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy. Retina. 2017;37:2151-2161.
  • 53. Schmidt J, Peters S, Sauer L, Schweitzer D, Klemm M, Augsten R, Müller N, Hammer M. Fundus autofluorescence lifetimes are increased in nonproliferative diabetic retinopathy. Acta Ophthalmol. 2017;95:33-40.
  • 54. Dysli C, Wolf S, Zinkernagel MS. Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2016;57:2479-2487.
  • 55. Sauer L, Schweitzer D, Ramm L, Augsten R, Hammer M, Peters S. Impact of Macular Pigment on Fundus Autofluorescence Lifetimes. Invest Ophthalmol Vis Sci. 2015;56:4668-4679.
  • 56. Schweitzer D. Metabolic mapping. In: Holz F, Spaide R, eds. Medical retina. Berlin; Heilderberg: Springer; 2010:107-123.
  • 57. Sauer L, Klemm M, Peters S, Schweitzer D, Schmidt J, Kreilkamp L, Ramm L, Meller D, Hammer M. Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach. Acta Ophthalmol. 2018;96:257-266.
  • 58. Ohsugi H, Tabuchi H, Enno H, Ishitobi N. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment. Sci Rep. 2017;7:9425.
  • 59. Matsuba S, Tabuchi H, Ohsugi H, Enno H, Ishitobi N, Masumoto H, Kiuchi Y. Accuracy of ultra-wide-field fundus ophthalmoscopy assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration. Int Ophthalmol. 2019;39:1269-1275.
APA SAHINOGLU-KESKEK N, Batıoğlu F (2021). Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. , 169 - 176. 10.4274/tjo.galenos.2020.49107
Chicago SAHINOGLU-KESKEK NEDIME,Batıoğlu Figen Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. (2021): 169 - 176. 10.4274/tjo.galenos.2020.49107
MLA SAHINOGLU-KESKEK NEDIME,Batıoğlu Figen Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. , 2021, ss.169 - 176. 10.4274/tjo.galenos.2020.49107
AMA SAHINOGLU-KESKEK N,Batıoğlu F Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. . 2021; 169 - 176. 10.4274/tjo.galenos.2020.49107
Vancouver SAHINOGLU-KESKEK N,Batıoğlu F Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. . 2021; 169 - 176. 10.4274/tjo.galenos.2020.49107
IEEE SAHINOGLU-KESKEK N,Batıoğlu F "Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı." , ss.169 - 176, 2021. 10.4274/tjo.galenos.2020.49107
ISNAD SAHINOGLU-KESKEK, NEDIME - Batıoğlu, Figen. "Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı". (2021), 169-176. https://doi.org/10.4274/tjo.galenos.2020.49107
APA SAHINOGLU-KESKEK N, Batıoğlu F (2021). Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. Türk Oftalmoloji Dergisi, 51(3), 169 - 176. 10.4274/tjo.galenos.2020.49107
Chicago SAHINOGLU-KESKEK NEDIME,Batıoğlu Figen Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. Türk Oftalmoloji Dergisi 51, no.3 (2021): 169 - 176. 10.4274/tjo.galenos.2020.49107
MLA SAHINOGLU-KESKEK NEDIME,Batıoğlu Figen Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. Türk Oftalmoloji Dergisi, vol.51, no.3, 2021, ss.169 - 176. 10.4274/tjo.galenos.2020.49107
AMA SAHINOGLU-KESKEK N,Batıoğlu F Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. Türk Oftalmoloji Dergisi. 2021; 51(3): 169 - 176. 10.4274/tjo.galenos.2020.49107
Vancouver SAHINOGLU-KESKEK N,Batıoğlu F Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı. Türk Oftalmoloji Dergisi. 2021; 51(3): 169 - 176. 10.4274/tjo.galenos.2020.49107
IEEE SAHINOGLU-KESKEK N,Batıoğlu F "Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı." Türk Oftalmoloji Dergisi, 51, ss.169 - 176, 2021. 10.4274/tjo.galenos.2020.49107
ISNAD SAHINOGLU-KESKEK, NEDIME - Batıoğlu, Figen. "Fundus Otofloresansın Kuru Tip Yaşa Bağlı Maküla Dejeneresansında Kullanımı". Türk Oftalmoloji Dergisi 51/3 (2021), 169-176. https://doi.org/10.4274/tjo.galenos.2020.49107