Yıl: 2021 Cilt: 30 Sayı: 5 Sayfa Aralığı: 561 - 579 Metin Dili: İngilizce DOI: 10.3906/yer-2104-20 İndeks Tarihi: 17-06-2022

The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey

Öz:
The Bahçecik travertines, located in Gümüşhane (NE-Turkey) have been investigated for the first time using a multidisciplinary approach, which included sedimentological (lithofacies, depositional system), petrographic, radiometric 230Th dating, geochemical analysis (stable isotopes), palynomorphs and geophysics (GPR). A carbonate build-up, 12 m thick, was formed with some interruptions, through the middle Pleistocene period. For this study, two travertine sections (F and D) were extensively used to figure out palaeoenvironmental and palaeoclimatic proxies. The main precipitation cycles, separated by palaeosol levels, have been described and interpreted from a sedimentological perspective. The carbonate deposits consist of shrubs, crystalline crust, reed, laminated (micritic), pisoids, oncoids, calcite thin rafts and coated gas bubbles, lithoclasts, and palaeosol levels. The sedimentological fieldwork and petrographic analysis show that the Bahçecik travertines formed in depression depositional and slope depositional systems. Moreover, the first 230Th ages, stable isotopic results and palynofloral data in this study, prove that the Bahçecik travertines might have been affected by climatic and tectonic interruptions. According to dating results, the travertine occurrences began to precipitate during the 353 ka and continued into the 263 ka. Based on the palynological data, an abundance of herbaceous plants species was recorded in the warming period of climate. The thickness ranges from 2 to 12 m of the Bahçecik travertines. This precise thickness and also the presence of two different travertine formations, separated by a palaeosol erosional surface, were recorded by the ground penetrating radar (GPR) geophysical method.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Andrews JE, Riding R, Dennis PF (1997). The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography Palaeoclimatology Palaeoecology 129: 171-189. doi: 10.1016/S0031-0182(96)00120-4
  • Andrews JE (2006). Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews 75: 85- 104. doi: 10.1016/j.earscirev.2005.08.002
  • Arenas C, Cabrera L, Ramos E (2007). Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island (Spain). Sedimentary Geology 197: 1–27. doi: 10.1016/j.sedgeo.2006.08.009
  • Arenas-Abad C, Vazquez-Urbez M, Pardo-Tirapu G, Sancho-Marcen C (2010). Fluvial and associated carbonate deposits. In: AlonsoZarza AM, Tanner L (editors). Carbonates in Continental Settings: Facies, Environments, and Processes. Developments Sedimentology 61, 1st Edition. USA: Elsevier, pp. 133–175.
  • Arslan M, Kolaylı H, Temizel İ, Çiftçi İ, Alp İ et al. (2005). Petrography, gepchemistry and formation conditions of Gümüşhane and Bayburt areas travertine onyx marble deposits, NE Turkey. In: Proceedings of 1st International Symposium on Travertine; Denizli, Turkey. pp. 171-176.
  • Bertini A, Minissale A, Ricci M (2014). Palynological approach in upper Quaternary terrestrial carbonates of Central Italy: anything but a “mission impossible”. Sedimentology 61: 200–220. doi: 10.1111/sed.12079
  • Barilaro F, Della Porta G, Capezzuoli E (2012). Depositional geometry and fabric types of hydrothermal travertine deposits (Albegna Valley, Tuscany, Italy). Rendiconti Online Societa’ Geologica Italiana 21: 1024-1025.
  • Beres M, Luetscher M, Oliver R (2001). Integration of groundpenetrating radar and microgravimetric methods to map shallow caves. Journal of Applied Geophysics 46 (4): 249-262.
  • Braithwaite CJR (1979). Crystal textures of Recent fluvial pisolites and laminated crystalline crusts in Dyfed, South Wales. Journal of Sedimentary Petrology 49 (1): 181–193. doi: 10.1306/212F76E9- 2B24-11D7-8648000102C1865D
  • Capezzuoli E, Gandin A, Pedley M (2014). Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61: 1-21. doi: 10.1111/sed.12075
  • Chafetz HS, Guidry SA (1999). Bacterial shrubs, crystal shrubs, and raycrystal crusts: Bacterially induced vs abiotic mineral precipitation. Sedimentary Geology 126: 57-74. doi: 10.1016/S0037- 0738(99)00032-9
  • Chafetz HS, Folk RL (1984). Travertines: depositional morphology and the bacterially constructed constituents. Journal Sedimentary Petrology 54 (1): 289-316. doi: 10.1306/212F8404-2B24-11D7- 8648000102C1865D
  • Chafetz HS (2013). Porosity in bacterially induced carbonates: focus on micropores. AAPG Bulletin 97 (11): 2103–2111. doi: 10.1306/04231312173
  • Cheng H, Edwards RL, Shen CC, Polyak VJ, Asmerom Y et al. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planetary Science Letters 371–372: 82-91. doi: 10.1016/j.epsl.2013.04.006
  • Claes H, Erthal MM, Soete J, Özkul M, Swennen R (2017). Shrub and pore type classification: petrography of travertine shrubs from the Ballık-Belevi area (Denizli, SW Turkey). Quaternary International 437: 147–163. doi: 10.1016/j.quaint.2016.11.002
  • Cook M, Chafetz HS (2017). Sloping fan travertine, Belen, New Mexico, USA. Sedimentary Geology 352: 30-44. doi: 10.1016/j.sedgeo.2017.02.010
  • Conyers LB (2006). Ground-penetrating radar techniques to discover and map historic graves. Historical Archaeology 40: 64–73. doi: 10.1007/BF03376733
  • Çapkınoğlu Ş (2003). First records of conodonts from “The PermoCarboniferous Of Demirözü” (Bayburt), Eastern Pontides, NE Turkey. Turkish Journal of Earth Sciences 12: 199-207.
  • Della Porta G, Reitner J (2020). The influence of microbial mats on travertine precipitation in active hydrothermal systems (Central Italy). doi: 10.1101/2020.07.29.226266
  • De Filippis L, Faccenna C, Billi A, Anzalone E, Brilli M et al. (2012). Growth of fissure ridge travertines from geothermal springs of Denizli Basin, western Turkey. GSA Bulletin 124: 1629–1645. doi: 10.1130/B30606.1
  • Dokuz A, Aydincakir E, Kandemir R, Karsli O, Siebel W et al. (2017). Late Jurassic magmatism and stratigraphy in the Eastern Sakarya Zone, Turkey: evidence for the slab breakoff of Paleotethyan oceanic lithosphere. The Journal of Geology 125: 1-31. doi: 10.1086/689552
  • Erthal MM, Capzezzuoli E, Mancini A, Claes H, Soete J et al. (2017). Shrub morpho-types as indicator for the water flow energy-Tivoli travertine case (Central Italy). Sedimentary Geology 347: 79-99. doi: 10.1016/j.sedgeo.2016.11.008
  • Faccenna C, Soligo M, Billi A, Filippis LD, Funiciello R et al. (2008). Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, central Itlay): possible influence of climate and fault activity. Global and Planetary Change 63: 299-308. doi: 10.1016/j.gloplacha.2008.06.006
  • Folk RL, Chafetz HS (1983). Pisoliths (pisoliths) in Quaternary travertines of Tivoli, Italy. In: Peryt TM (editor). Coated Grain. Berlin, Germany: Springer-Verlag, pp. 474-487.
  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC et al. (2000). Depositional facies and aqueous-solid geochemistry of travertine depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). Journal of Sedimentary Research 70: 565–585. doi: 10.1306/2dc40929-0e47-11d7- 8643000102c1865d
  • Gandin A, Capezzuoli E (2008). Travertine versus Calcareous tufa: distinctive petrologic features and stable isotope signatures. Italian Journal of Quaternary Sciences 21: 125–136.
  • Gandin A, Capezzuoli E (2014). Travertine: distinctive depositional fabrics of carbonates from thermal spring systems. Sedimentology 61: 264-290. doi: 10.1111/sed.12087
  • Guo L (1993). Fabrics and facies of Quaternary travertines, Rapolano Terme, central Italy. PhD, Universty of Wales, Cardiff, UK.
  • Guo L, Riding R (1998). Hot-spring travertine facies and sequences, Late Pleistocene Rapolano Terme, Italy. Sedimentology 45: 163-180. doi: 10.1046/j.1365-3091.1998.00141.x
  • Güven İH (1993). Doğu Pontidlerin 1/250.000 ölçekli komplikasyonu, Maden Tetkik Arama Genel Müdürlüğü, Ankara.
  • Hancock PL, Chalmers RML, Altunel E, Çakir Z (1999). Travitonics: using travertines in active fault studies. Journal of Structural Geology 21: 903-916. doi: 10.1016/S0191-8141(99)00061-9
  • Hiess J, Condon DJ, McLean N, Noble SR (2012). 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335: 1610–1614. doi: 10.1126/science.1215507
  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971). Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4: 1889–1906.
  • Jones FG, Wilkinson BH (1978). Structure and growth of lacustrine pisoliths from recent Michigan marl lakes. Journal of Sedimentary Petrology 48: 1103–1111.
  • Jones B, Renaut RW (2008). Cyclic development of large, complex calcite dendrite crystals in the Clinton travertine, Interior British Columbia, Canada. Sedimentary Geology 203: 17–35. doi: 10.1016/j.sedgeo.2007.10.002
  • Jones, B., Renaut RW (2010) Calcareous spring deposits in continental settings. In: Carbonates in Continental Settings: Facies, Environments, and Processes (Eds A.M. Alonso Zarza and L.H. Taner), Development in Sedimentology 61: 177–204.
  • Kadıoğlu S (2008). Photographing layer thicknesses and discontinuities in a marble quarry with 3D GPR visualization. Journal of Applied Geophysics 64 (3-4): 109–14. doi: 10.1016/j.jappgeo.2008.01.001
  • Kandemir R (2004) Sedimentary characteristics and depositional conditions of Lower-Middle Jurassic Şenköy Formation in and around Gümüşhane. PhD, Karadeniz Technical University, Trabzon, Turkey (in Turkish).
  • Karaisalıoğlu S, Orhan H (2018). Sedimentology and geochemistry of the Kavakköy Travertine (Konya, central Turkey). Carbonates and Evaporites 33: 783–800. doi: 10.1007/s13146-018-0436-z
  • Karsli O, Dokuz A, Kandemir R (2016). Subduction-related Late Carboniferous to Early Permian Magmatism in the Eastern Pontides, the Camlik and Casurluk plutons: Insights from geochemistry, whole-rock Sr–Nd and in situ zircon Lu–Hf isotopes, and U–Pb geochronology. Lithos 266-257: 98-114. doi: 10.1016/j.lithos.2016.10.007
  • Kele S, Özkul M, Gökgöz A, Fórizs I, Baykara MO et al. (2011). Stable isotope geochemical and facies study of Pamukkale travertines: new evidences of low-temperature non-equilibrium calcite-water fractionation. Sedimentary Geology 238: 191–212. doi: 10.1016/j.sedgeo.2011.04.015
  • Mancini A, Frondini F, Capezzuoli E, Galvez Mejia E, Lezzi G et al. (2019). Porosity, bulk density and CaCO3 content of travertines. A new dataset from Rapolano, Canino and Tivoli travertines (Italy). Journal of Data in Brief 25:104158. doi: 10.1016/j.dib.2019.104158
  • Mendonça-Filho JG, Menezes TR, Oliveira-Mendonça J, Donizeti de Oliveira A, Freitas da Silva T et al. (2012). Organic Facies: Palynofacies and Organic Geochemistry Approaches, Geochemistry - Earth's System Processes, Dr. Dionisios Panagiotaras (Ed.), ISBN: 978-953-51-0586-2, InTech, Available from: http://www.intechopen.com/books/geochemistry-earth-ssystem-processes/organic-facies-palynofacies-andorganicgeochemistry-approaches
  • Minissale A, Kerrick DM, Magro G, Murrell MT, Paladini M et al. (2002). Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatologic implications. Earth and Planetary Science Letters 203: 709–728. doi: 10.1016/S0012-821X(02)00875-0
  • Minissale A, Sturchio NC (2004). Travertines of Tuscany and Latium (Central Italy) Florence. In: International School of Travertine and Tufa; Abbadia San Salvatore, Italy. P25.
  • Okay AI, Leven EJ (1996). Stratigraphy and paleontology of the Upper Paleozoic sequence in the Pulur (Bayburt) region, Eastern Pontides. Turkish Journal of Earth Sciences 5: 145-155.
  • Okay AI, Şahintürk Ö (1997). Geology of the Eastern Pontides. In: Robinson AG (editor). Regional and petroleum geology of the Black Sea and surrounding region. USA, American Association of Petroleum Geologists Memoir 68: pp. 291–311.
  • Okay AI, Tüysüz O (1999). Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horváth F, Séranne M (editors). The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society of London Special Publications 156: 475-515.
  • Öğretmen Z, Şeren A (2014). Investigating fracture-crack systems with geophysical methods in Bayburt Kiratlı travertine. Journal of Geophysics and Engineering 11 (6): 065009. doi: 1088/1742- 2132/11/6/065009
  • Özkul M, Varol B, Alçiçek MC (2002). Depositional environments and petrography of Denizli travertines. Bulletin of the Mineral Research and Exploration 125: 13-29.
  • Özkul M, Kele S, Gökgöz A, Shen CC, Jones B et al. (2013). Comparison of the Quaternary travertine sites in the Denizli extensional basin based on their depositional and geochemical data. Sedimentary Geology 294: 179-204. doi: 10.1016/j.sedgeo.2013.05.018
  • Özyurt M, Kırmacı MZ, Al-Aasm IS (2019). Geochemical characteristics of Upper Jurassic – Lower Cretaceous platform carbonates in Hazine Mağara, Gümüşhane (northeast Turkey): implications for dolomitization and recrystallization. Canadian Journal of Earth Sciences, 56 (3): 306-320. doi:10.1139/cjes-2018-0168
  • Pedley HM (2009). Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology 56: 221–246. doi: 10.1111/j.1365- 3091.2008.01012.x
  • Pentecost A (2005) Travertine. Berlin, Germany: Springer. Pelin S (1977). Alucra (Giresun) Güneydoğu Yöresinin petrol olanakları bakımından jeolojik incelenmesi. Karadeniz Teknik Üniversitesi Yer Bilimleri Dergisi 13: 38-42 (in Turkish).
  • Porsani LJ, Sauck WA, Junior AOS (2006). GPR for Mapping fractures and as a guide for extraction of ornamental granite from a quarry: a case study from southern Brazil. Journal of Applied Geophysics 58: 177–87. doi: 10.1016/j.jappgeo.2005.05.010
  • Rainey DK, Jones B (2005). Radiating calcite dendrites- precursors for coated grain formation in the Fairmont Hot Springs Travertine, Canada. In: Proceedings of International Symposium on Travertine, Denizli,Turkey. pp. 21- 25.
  • Rickets JW, Ma L, Wagler AE, Garcia VH (2019). Global travertine deposition modulated by oscillations in climate. Journal of Quaternary Science 34: 558-568. doi: 10.1002/jqs.3144.
  • Shäfer A, Stapf KRG (1978). Permian Saar-Nahe Basin and Recent Lake Constance (Germany): two environments of lacustrine algal carbonates. In: Matter A, Tucker ME (editors). Modern and Ancient Lake Sediments. The International Association of Sedimentologists Oxford, UK: Wiley, pp. 83–107.
  • Shen C-C, Wu C-C, Cheng H, Edwards RL, Hsieh Y-T et al. (2012). High-precision and high-resolution carbonate 230Th dating by MCICP-MS with SEM protocols. Geochimica et Cosmochimica Acta 99: 71-86. doi: 10.1016/j.gca.2012.09.018
  • Silva CCN, Medeiros WE, Sá EFJ, Neto PX (2004). Resistivity and ground-penetrating radar images of fractures in a crystalline aquifer: a case study in CaiÇara farm-NE Brazil. Journal of Applied Geophysics 56: 295–307. doi: 10.1016/j.jappgeo.2004.08.001
  • Şaffak D (2018). Bahçecik (Tekke-Gümüşhane) travertenlerinin sedimantolojik, paleoiklimsel ve yer radarı (GPR) verilerinin incelenmesi. Yüksek Lisans, Recep Tayyip Erdoğan University, Rize, Turkey (in Turkish).
  • Tagliasacchi E, Kayseri-Özer MS (2020). Multidisciplinary approach signals of the non-marine carbonates: the case of the Sarıkavak tufa deposits (Afyon, SW-Turkey). Quaternary International 544: 41- 56. doi: 10.1016/j.quaint.2019.12.016
  • Teboul PA, Durlet C, Gaucher EC, Virgone A, Girard JP et al. (2016). Origins of elements building travertine and tufa: new perspectives provided by isotopic and geochemical tracers. Sedimentary Geology 334: 97–114. doi: 10.1016/j.sedgeo.2016.01.004
  • Tokel S (1972). Stratigraphical and Volcanic History of the Gümüşhane Region, PhD, University College of London, England.
  • Toker E, Kayseri-Özer MS, Özkul M, Kele S (2015). Depositional system and palaeoclimatic interpretations of Middle to Late Pleistocene travertines: Kocabaş, Denizli, SW Turkey. Sedimentology 62 (5): 1360-1383. doi: 10.1111/sed.12186
  • Toker E (2017). Quaternary fluvials tufas of Sarıkavak area, southwestern Turkey: Facies and depositional systems. Quaternary International 437 (Part A): 37-50. doi: 10.1016/j.quaint.2016.06.034
  • Topuz G, Altherr R, Schwarz WH, Dokuz A, Meyer HP (2007). Variscan amphibolite-facies rocks from the Kurtoğlu metamorphic complex, Gümüşhane area, Eastern Pontides, Turkey. International Journal of Earth Sciences 96:861-873. doi: 10.1007/s00531-006-0138-y
  • Turhan E (2007). Denizli yöresi ( Batı Anadolu) traverten tipi karbonatların fasiyes özellikleri. Master’s thesis, İzmir, Turkey (in Turkish).
  • Wright VP (2012). Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Geological Society of London, Special Publication 370: 39–47. doi: 10.1144/SP370.2
  • Yalçıner CÇ (2013). Investigation of subsurface geometry of fissure– ridge travertine with GPR, Pamukkale, western Turkey. Journal of Geophysics and Engineering 10 (3): 035001. doi: 10.1088/1742- 2132/10/3/035001
  • Yalçınalp B, Ersoy H, Fırat Ersoy A, Keke C (2008). Bahçecik (Gümüşhane) Travertenlerinin Jeolojik ve Jeoteknik Özellikleri. Jeoloji Mühendisliği Dergisi 32: 25-39.
  • Yılmaz C, Kandemir R (2006). Sedimentary records of the extensional tectonic regime with temporal cessation: Gümüshane Mesozoic Basin (NE Turkey). Geologica Carpathica 57 (1): 3–13.
  • Yılmaz C, Carranante G, Kandemir R (2008). The rift-related Late Cretaceous drowning of the Gümüşhane carbonate platform (NE Turkey). Bollettino Societa Geologica Italiana 127 (1): 37-50.
  • Yoshimura K, Liu Z, Cao J, Yuan D, Inokura Y et al. (2004). Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China. Chemical Geology 205: 141–153. doi: 10.1016/j.chemgeo.2004.01.004
APA KANDEMIR R, Tagliasacchi E, Kayseri Özer M, ŞAFFAK D, Köroğlu D, HU H, SHEN C (2021). The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. , 561 - 579. 10.3906/yer-2104-20
Chicago KANDEMIR RAIF,Tagliasacchi Ezher,Kayseri Özer Mine Sezgül,ŞAFFAK Dilek,Köroğlu Dr. Fatih,HU Hsun-Ming,SHEN CHUAN-CHOU The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. (2021): 561 - 579. 10.3906/yer-2104-20
MLA KANDEMIR RAIF,Tagliasacchi Ezher,Kayseri Özer Mine Sezgül,ŞAFFAK Dilek,Köroğlu Dr. Fatih,HU Hsun-Ming,SHEN CHUAN-CHOU The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. , 2021, ss.561 - 579. 10.3906/yer-2104-20
AMA KANDEMIR R,Tagliasacchi E,Kayseri Özer M,ŞAFFAK D,Köroğlu D,HU H,SHEN C The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. . 2021; 561 - 579. 10.3906/yer-2104-20
Vancouver KANDEMIR R,Tagliasacchi E,Kayseri Özer M,ŞAFFAK D,Köroğlu D,HU H,SHEN C The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. . 2021; 561 - 579. 10.3906/yer-2104-20
IEEE KANDEMIR R,Tagliasacchi E,Kayseri Özer M,ŞAFFAK D,Köroğlu D,HU H,SHEN C "The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey." , ss.561 - 579, 2021. 10.3906/yer-2104-20
ISNAD KANDEMIR, RAIF vd. "The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey". (2021), 561-579. https://doi.org/10.3906/yer-2104-20
APA KANDEMIR R, Tagliasacchi E, Kayseri Özer M, ŞAFFAK D, Köroğlu D, HU H, SHEN C (2021). The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. Turkish Journal of Earth Sciences, 30(5), 561 - 579. 10.3906/yer-2104-20
Chicago KANDEMIR RAIF,Tagliasacchi Ezher,Kayseri Özer Mine Sezgül,ŞAFFAK Dilek,Köroğlu Dr. Fatih,HU Hsun-Ming,SHEN CHUAN-CHOU The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. Turkish Journal of Earth Sciences 30, no.5 (2021): 561 - 579. 10.3906/yer-2104-20
MLA KANDEMIR RAIF,Tagliasacchi Ezher,Kayseri Özer Mine Sezgül,ŞAFFAK Dilek,Köroğlu Dr. Fatih,HU Hsun-Ming,SHEN CHUAN-CHOU The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. Turkish Journal of Earth Sciences, vol.30, no.5, 2021, ss.561 - 579. 10.3906/yer-2104-20
AMA KANDEMIR R,Tagliasacchi E,Kayseri Özer M,ŞAFFAK D,Köroğlu D,HU H,SHEN C The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. Turkish Journal of Earth Sciences. 2021; 30(5): 561 - 579. 10.3906/yer-2104-20
Vancouver KANDEMIR R,Tagliasacchi E,Kayseri Özer M,ŞAFFAK D,Köroğlu D,HU H,SHEN C The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey. Turkish Journal of Earth Sciences. 2021; 30(5): 561 - 579. 10.3906/yer-2104-20
IEEE KANDEMIR R,Tagliasacchi E,Kayseri Özer M,ŞAFFAK D,Köroğlu D,HU H,SHEN C "The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey." Turkish Journal of Earth Sciences, 30, ss.561 - 579, 2021. 10.3906/yer-2104-20
ISNAD KANDEMIR, RAIF vd. "The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey". Turkish Journal of Earth Sciences 30/5 (2021), 561-579. https://doi.org/10.3906/yer-2104-20