Yıl: 2021 Cilt: 30 Sayı: 5 Sayfa Aralığı: 628 - 638 Metin Dili: İngilizce DOI: 10.3906/yer-2101-20 İndeks Tarihi: 17-06-2022

Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara

Öz:
Fluid vents in the Sea of Marmara were discovered and investigated by several studies. In this paper, a numerical model is created for the first time to determine the possible transport mechanism behind those fluid emissions at the seafloor. The finite volume method is used for numerical simulations by implementing a commercial finite volume code, ANSYS-Fluent. The thermal and physical rock properties used in our models are taken from previous studies. Bathymetry, fault-controlled fluid flow velocities, and temperature distribution patterns for the Central Basin and Western High in the Sea of Marmara are simulated and presented. Effects of faults, thickness of sediments, and hydrostatic pressure due to the water column thickness on fluid flow are demonstrated. Driving mechanisms of the fluid flow are also discussed. It is found that both seafloor bathymetry and presence of faults can control the location and distribution of fluid emissions at the seafloor.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alpar B, Güneysu C (1999). Evolution of the Hersek Delta (Izmit Bay). Turkish Journal of Marine Sciences 5 (2): 57-74.
  • Ambraseys NN, Jackson JA (2000). Seismicity of the Sea of Marmara ( Turkey ) since 1500. Geophysical Journal International 141 (3): F1–F6. doi: 10.1046/j.1365-246x.2000.00137.x
  • Armijo R, Meyer B, Navarro S, King G, Barka A (2002). Asymmetric slip partitioning in the sea of Marmara pull-apart: A clue to propagation processes of the North Anatolian Fault? Terra Nova 14 (2): 80-86. doi: 10.1046/j.1365-3121.2002.00397.x
  • Bécel A, Laigle M, de Voogd B, Hirn A, Taymaz T et al. (2010). North Marmara Trough architecture of basin infill, basement and faults, from PSDM reflection and OBS refraction seismics. Tectonophysics 490: 1-14. doi: 10.1016/j.tecto.2010.04.004
  • Bécel A, Laigle M, de Voogd B, HirDn A, Taymaz T et al. (2009). Moho, crustal architecture and deep deformation under the North Marmara Trough, from the SEISMARMARA Leg 1 offshoreonshore reflection-refraction survey. Tectonophysics 467: 1-21. doi: 10.1016/j.tecto.2008.10.022
  • Bense VF, Person MA (2006). Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources Research 42: 1-18. doi: 10.1029/2005WR004480
  • Bourry C, Chazallon B, Charlou JL, Donval JP, Ruffine L et al. (2009). Free gas and gas hydrates from the Sea of Marmara, Turkey. Chemical and structural characterization. Chemical Geology 264: 197-206. doi: 10.1016/j.chemgeo.2009.03.007
  • Burnard P, Bourlange S, Henry P, Geli L, Tryon MD et al. (2012). Constraints on fluid origins and migration velocities along the Marmara Main Fault (Sea of Marmara, Turkey) using helium isotopes. Earth Planetary Science Letters 341-344: 68-78. doi: 10.1016/j.epsl.2012.05.042
  • Çağatay MN, Uçarkuş G (2019). Morphotectonics of the Sea of Marmara: Basins and Highs on the North Anatolian Continental Transform Plate Boundary. Transform Plate Boundaries Fracture Zones 397- 416. doi: 10.1016/b978-0-12-812064-4.00016-5
  • Çağatay MN, Yıldız G, Bayon G, Ruffine L, Henry P (2018). Seafloor authigenic carbonate crusts along the submerged part of the North Anatolian Fault in the Sea of Marmara: Mineralogy, geochemistry, textures and genesis. Deep-Sea Research Part II Topical Studies Oceanography 153: 92-109. doi: 10.1016/j.dsr2.2017.09.003
  • Chamot-Rooke N, Rabaute A, Kreemer C (2005). Western Mediterranean Ridge mud belt correlates with active shear strain at the prism-backstop geological contact. Geology 33 (11):861-864. doi: 10.1130/G21469.1
  • Demirbaǧ E, Kurt H, Düşünür D, Sarıkavak K, Çetin S (2007). Constructing a 3D structural block diagram of the Central Basin in Marmara Sea by means of bathymetric and seismic data. Marine Geophysical Research 28 (4): 343-353. doi: 10.1007/s11001-007- 9036-3
  • Demirbaǧ E, Rangin C, Le Pichon X, Şengör AMC (2003). Investigation of the tectonics of the Main Marmara Fault by means of deeptowed seismic data. Tectonophysics 361: 1-19. doi: 10.1016/S0040- 1951(02)00535-8
  • Dupré S, Scalabrin C, Grall C, Augustin JM, Henry P et al. (2015). Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging. Journal of Geophysical Research: Solid Earth 3782-3803. doi: 10.1002/2015JB012608.Received
  • Düşünür-Doğan D, Üner S (2019). Numerical simulation of groundwater flow and temperature distribution in Aegean Coast of Turkey. Journal of Earth System Science 128: doi: 10.1007/s12040- 019-1183-9
  • Düşünür D (2004). Orta Marmara Havzası’nın Aktif Tektonik Yapısının Deniz Jeofiziği Akustik Yöntemleriyle Araştırılması. MSc, Istanbul Technical University, İstanbul, Turkey (in Turkish).
  • Embriaco D, Marinaro G, Frugoni F, Monna S, Etiope G et al. (2013). Monitoring of gas and seismic energy release by multiparametric benthic observatory along the North Anatolian Fault in the Sea of Marmara (NW Turkey). Geophysical Journal International 196: 850-866. doi: 10.1093/gji/ggt436
  • Fairley JP, Hinds JJ (2004). Field observation of fluid circulation patterns in a normal fault system. Geophysical Research Letters 31: 2-5. doi: 10.1029/2004GL020812
  • Flerit F, Armijo R, King GCP, Meyer B, Barka A (2003). Slip partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors. Geophysical Journal International 154: 1-7. doi: 10.1046/j.1365-246X.2003.01899.x
  • Fontaine FJ, Rabinowicz M, Cannat M (2017). Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges? Geochemistry Geophysics Geosystems 1907-1925. doi: 10.1002/2016GC006737.Received
  • Fontaine FJ, Wilcock WSD (2007). Two-dimensional numerical models of open-top hydrothermal convection at high Rayleigh and Nusselt numbers: Implications for mid- ocean ridge hydrothermal circulation. Geochemistry, Geophysics, Geosystems 8 (7): 1-17. doi: 10.1029/2007GC001601
  • Gasperini L, Polonia A, del Bianco F, Favali P, Marinaro G et al. (2012a). Cold seeps, active faults and the earthquake cycle along the North Anatolian Fault system in the Sea of Marmara (NW Turkey). Bollettino di Geofisica Teorica ed Applicata 53 (4): 371-384. doi: 10.4330/bgta0082
  • Gasperini L, Etiope G, Marinaro G, Favali P, Italiano F et al. (2012b). Gas seepage and seismogenic structures along the North Anatolian Fault in the eastern Sea of Marmara. Geochemistry, Geophysics, Geosystems 13 (10): 1-19. doi: 10.1029/2012GC004190
  • Géli L, Henry P, Grall C, Tary B, Lomax A et al. (2018). Gas and seismicity within the Istanbul seismic gap. Scientific Reports 8: 1- 11. doi: 10.1038/s41598-018-23536-7
  • Géli L, Henry P, Zitter T, Dupré S, Tryon M et al. (2008). Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara. Earth Planet Science Letters 274: 34-39. doi: 10.1016/j.epsl.2008.06.047
  • Gökaşan E, Ustaömer T, Gazioǧlu C, Yücel ZY, Öztürk K et al. (2003). Morpho-tectonic evolution of the Marmara Sea inferred from multi-beam bathymetric and seismic data. Geo-Marine Letters 23: 19-33. doi: 10.1007/s00367-003-0120-7
  • Grall C, Henry P, Dupré S, Geli L, Scalabrin C et al. (2018). Upward migration of gas in an active tectonic basin: An example from the Sea of Marmara. Deep-Sea Research Part II: Topical Studies in Oceanography153: 17-35. doi: 10.1016/j.dsr2.2018.06.007
  • Grall C, Henry P, Thomas Y, Westbrook GK, Çağatay MN et al. (2013). Slip rate estimation along the western segment of the main marmara fault over the last 405-490 ka by correlating mass transport deposits. Tectonics 32:1587-1601. doi: 10.1002/2012TC003255
  • Grall C, Henry P, Tezcan D, de Lepinay BM, Becel A et al. (2012). Heat flow in the Sea Of Marmara Central Basin: Possible implications for the tectonic evolution of the North Anatolian fault. Geology 40: 3-6. doi: 10.1130/G32192.1
  • Heffner J, Fairley J (2006). Using surface characteristics to infer the permeability structure of an active fault zone. Sedimentary Geology 184:255-265. doi: 10.1016/j.sedgeo.2005.11.019
  • Hensen C, Duarte JC, Vannucchi P, Mazzini A, Lever MA et al. (2019). Marine transform faults and fracture zones: A joint perspective integrating seismicity, fluid flow and life. Frontiers in Earth Science 7: 1-29. doi: 10.3389/feart.2019.00039
  • İmren C, Le Pichon X, Rangin C, Demirbağ E, Ecevitoğlu B et al. (2001). The North Anatolian Fault within the sea of Marmara: A new interpretation based on multi-channel seismic and multi-beam bathymetry data. Earth and Planetary Science Letters 186: 143-158. doi: 10.1016/S0012-821X(01)00241-2
  • İmren C (2003). Marmara Denizi faal tektonizmasinin sismik yansima ve derinlik verileri ile incelenmesi. PhD, İstanbul Technical University, İstanbul, Turkey (in Turkish).
  • Kuşçu İ, Okamura M, Matsuoka H, Gökaşan E, Awata Y et al. (2005). Seafloor gas seeps and sediment failures triggered by the August 17, 1999 earthquake in the Eastern part of the Gulf of İzmit, Sea of Marmara, NW Turkey. Marine Geology 215: 193-214. doi: 10.1016/j.margeo.2004.12.002
  • Laigle M, Becel A, de Voogd B, Hirn A, Taymaz T et al. (2008). A first deep seismic survey in the Sea of Marmara: Deep basins and whole crust architecture and evolution. Earth Planetary Science Letters 270: 168-179. doi: 10.1016/j.epsl.2008.02.031
  • Le Pichon X, Imren C, Rangin C, Şengör AMC, Siyako M (2014). The South Marmara Fault. International Journal of Earth Sciences 103: 219-231. doi: 10.1007/s00531-013-0950-0
  • Le Pichon X, Chamot-Rooke N, Rangin C, Sengör AMC (2003). The North Anatolian fault in the Sea of Marmara. Journal of Geophysical Research: Solid Earth 108: 1-20. doi: 10.1029/2002jb001862
  • Le Pichon X, Şengör AMC, Demirbağ E, Rangin C, İmren C et al. (2001). The active Main Marmara Fault. Earth Planetary Science Letters 192: 595-616.
  • López DL, Smith L (1996). Fluid flow in fault zones: Influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime. Water Resources Research 32 (10): 3227-3235. doi: 10.1029/96WR02101
  • Loreto MF, Düşünür-Doğan D, Üner S, İşcan-Alp Y, Ocakoğlu N et al. (2019). Fault-controlled deep hydrothermal flow in a back-arc tectonic setting, SE Tyrrhenian Sea. Scientific Reports 9: 1-14. doi: 10.1038/s41598-019-53696-z
  • Magri F, Akar T, Gemici U, Pekdeger A (2012) Numerical investigations of fault-induced seawater circulation in the Seferihisar-Balçova Geothermal system, western Turkey. Hydrogeology Journal 20: 103-118. doi: 10.1007/s10040-011-0797-z
  • Magri F, Akar T, Gemici U, Pekdeger A (2010). Deep geothermal groundwater flow in the Seferihisar-Balçova area, Turkey: Results from transient numerical simulations of coupled fluid flow and heat transport processes. Geofluids 10: 388-405. doi: 10.1111/j.1468-8123.2009.00267.x
  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S et al. (2000). Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research 105: 5695-5719. doi: 10.1029/1999jb900351
  • McKenna JR, Blackwell DD (2004). Numerical modeling of transient Basin and Range extensional geothermal systems. Geothermics 33: 457-476. doi: 10.1016/j.geothermics.2003.10.001
  • Meade BJ, Hager BH, Mcclusky SC, Reilinger RE, Ergintav S et al. (2002). Estimates of Seismic Potential in the Marmara Sea Region from Block Models of Secular Deformation Constrained by Global Positioning System Measurements. Bulletin of the Seismological Society of America 92 (1): 208-215. doi: 10.1785/0120000837
  • Okay AI, Kaşlilar-Özcan A, Imren C, Boztepe-Güney A, Demirbağ E et al. (2000). Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey: A multichannel seismic reflection study. Tectonophysics 321: 189-218. doi: 10.1016/S0040- 1951(00)00046-9
  • Okay S, Aydemir S (2016). Control of active faults and sea level changes on the distribution of shallow gas accumulations and gas-related seismic structures along the central branch of the North Anatolian Fault, southern Marmara shelf, Turkey. Geodinamica Acta 28 (4): 328-346. doi: 10.1080/09853111.2016.1183445
  • Orange DL, Greene HG, Martin JB, McHugh CM, Ryan WBF et al. (1999). Widespread fluid expulsion on a translational continental margin: Mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California. Geological Society of America Bulletin 111 (7): 992-1009
  • Rangin C, Le Pichon X, Demirbag E, Imren C (2004). Strain localization in the Sea of Marmara: Propagation of the North Anatolian Fault in a now inactive pull-apart. Tectonics 23: 1-18. doi: 10.1029/2002TC001437
  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S et al. (2006). GPS constraints on continental deformation in the Africa-ArabiaEurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth 111: 1-26. doi: 10.1029/2005JB004051
  • Ruffine L, Olivia FT, Etoubleau J, Chéron S, Donval JP et al. (2012). Geochemical Dynamics of the Natural-Gas Hydrate System in the Sea of Marmara, offshore Turkey. In: Al-Megren DH (editors). Geochemical Dynamics of the Natural-Gas Hydrate System in the Sea of Marmara, Offshore Turkey, Advances in Natural Gas Technology. pp. 29-56
  • Ruffine L, Ondreas H, Blanc-Valleron MM, Teichert BMA, Scalabrin C et al. (2018). Multidisciplinary investigation on cold seeps with vigorous gas emissions in the Sea of Marmara (MarsiteCruise): Strategy for site detection and sampling and first scientific outcome. Deep Research Part II Topical Studies in Oceanography 153: 36-47. doi: 10.1016/j.dsr2.2018.03.006
  • Sarıtaş H, Çifçi G, Géli L, Yannick T, Bruno M et al. (2018). Gas occurrence and shallow conduit systems in the Western Sea of Marmara: a review and new acoustic evidence. Geo-Marine Letters 38 (5): 385-402. doi: 10.1007/s00367-018-0547-5
  • Scholz CH, Anders MH (1994). The Permeability of Faults, in the mechanical involvement of fluids in faulting. U.S. Geological Survey Open-File Report 94-228.
  • Şengör AMC, Grall C, İmren C, Le Pichon X, Görür N et al. (2014). The geometry of the North Anatolian transform fault in the Sea of Marmara and its temporal evolution: implications for the development of intracontinental transform faults. Canadian Journal of Earth Sciences 51: 222-242. doi: 10.1139/cjes-2013-0160
  • Şengör A, Tüysüz O, İmren C, Sakınç M, Eyidoğan H et al. (2005). The North Anatolian Fault: a New Look. Annual Review of Earth and Planetary Sciences 33: 37-112. doi: 10.1146/annurev.earth.32.101802.120415
  • Sorlien CC, Akhun SD, Seeber L, Steckler M, Shillington DJ et al. (2012). Uniform basin growth over the last 500ka, North Anatolian Fault, Marmara Sea, Turkey. Tectonophysics 518-521: 1-16. doi: 10.1016/j.tecto.2011.10.006
  • Stakes DS, Orange D, Paduan JB, Salamy KA, Maher N et al. (1999.) Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Marine Geology 159: 93-109.
  • Tary JB, Géli L, Lomax A, Batsi E, Riboulot V et al. (2019). Improved detection and Coulomb stress computations for gas-related, shallow seismicity, in the Western Sea of Marmara. Earth and Planetary Science Letters 513: 113-123. doi: 10.1016/j.epsl.2019.02.021
  • Tary JB, Géli L, Guennou C, Henry P, Sultan N et al. (2012). Microevents produced by gas migration and expulsion at the seabed: A study based on sea bottom recordings from the Sea of Marmara. Geophysical Journal International 190: 993-1007. doi: 10.1111/j.1365-246X.2012.05533.x
  • Tary JB, Géli L, Henry P, Natalin B, Gasperini L et al. (2011). Sea-Bottom observations from the western escarpment of the Sea of Marmara. Bulletin of the Seismological Society of America 101: 775-791. doi: 10.1785/0120100014
  • Üner S, Düşünür Doğan D (2021). An integrated geophysical, hydrological, thermal approach to finite volume modelling of faultcontrolled geothermal fluid circulation in Gediz Graben. Geothermics 90: 102004. doi: 10.1016/j.geothermics.2020.102004
  • Üner S, Düşünür Doğan D (2019). Hesaplamalı Akışkanlar Dinamiği Çözücüsü Ansys Fluent Programının Karşılaştırmalı Çözümü ve Yerbilimlerinde Uygulaması. İstanbul Yerbilim Dergisi 30 (1): 50- 57 (in Turkish).
  • Wessel P, Smith WHF (1991). Free software helps map and display data. Eos, Transactions American Geophysical Union 72 (41): 441-446. doi: 10.1029/90EO00319
  • Wilson JT (1965) A new class of faults and their bearing on continental drift. Nature 24: 343-347.
  • Zitter TAC, Grall C, Henry P, Özeren MS, Çağatay MN et al. (2012.) Distribution, morphology and triggers of submarine mass wasting in the Sea of Marmara. Marine Geology 329-331: 58-74. doi: 10.1016/j.margeo.2012.09.002
  • Zitter TAC, Henry P, Aloisi G, Delaygue G, Çağatay MN et al. (2008). Cold seeps along the main Marmara Fault in the Sea of Marmara (Turkey). Deep-Sea Research Part I: Oceanographic Research Papers 55: 552-570. doi: 10.1016/j.dsr.2008.01.002
  • Zitter TAC, Huguen C, Ten Veen JT, Woodside JM (2006). Tectonic control on mud volcanoes and fluid seeps in the Anaximander Mountains, eastern Mediterranean Sea. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia 615-631. doi: 10.1130/2006.2409(28)
APA SEN E, doğan d (2021). Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. , 628 - 638. 10.3906/yer-2101-20
Chicago SEN ELIF,doğan doğa Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. (2021): 628 - 638. 10.3906/yer-2101-20
MLA SEN ELIF,doğan doğa Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. , 2021, ss.628 - 638. 10.3906/yer-2101-20
AMA SEN E,doğan d Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. . 2021; 628 - 638. 10.3906/yer-2101-20
Vancouver SEN E,doğan d Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. . 2021; 628 - 638. 10.3906/yer-2101-20
IEEE SEN E,doğan d "Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara." , ss.628 - 638, 2021. 10.3906/yer-2101-20
ISNAD SEN, ELIF - doğan, doğa. "Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara". (2021), 628-638. https://doi.org/10.3906/yer-2101-20
APA SEN E, doğan d (2021). Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. Turkish Journal of Earth Sciences, 30(5), 628 - 638. 10.3906/yer-2101-20
Chicago SEN ELIF,doğan doğa Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. Turkish Journal of Earth Sciences 30, no.5 (2021): 628 - 638. 10.3906/yer-2101-20
MLA SEN ELIF,doğan doğa Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. Turkish Journal of Earth Sciences, vol.30, no.5, 2021, ss.628 - 638. 10.3906/yer-2101-20
AMA SEN E,doğan d Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. Turkish Journal of Earth Sciences. 2021; 30(5): 628 - 638. 10.3906/yer-2101-20
Vancouver SEN E,doğan d Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara. Turkish Journal of Earth Sciences. 2021; 30(5): 628 - 638. 10.3906/yer-2101-20
IEEE SEN E,doğan d "Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara." Turkish Journal of Earth Sciences, 30, ss.628 - 638, 2021. 10.3906/yer-2101-20
ISNAD SEN, ELIF - doğan, doğa. "Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara". Turkish Journal of Earth Sciences 30/5 (2021), 628-638. https://doi.org/10.3906/yer-2101-20