Yıl: 2022 Cilt: 26 Sayı: 1 Sayfa Aralığı: 163 - 173 Metin Dili: İngilizce DOI: 10.29228/jrp.113 İndeks Tarihi: 17-06-2022

In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz

Öz:
In this study, methanol extract (CSM) and their hexane (CSH), chloroform (CSC), ethyl acetate (CSEA) and aqueous methanol fractions (CSAM) prepared from aerial parts of Centaurea saligna (K.Koch) Wagenitz were investigated for in vitro antiproliferative, anti-inflammatory and antioxidant activity. Anticancer, antioxidant, antiinflammatory activities of these extracts were carried out by MTT, DPPH-ABTS, 5-lipoxygenase methods, respectively. Methanol extract and its fractions of C. saligna were evaluated for their cytotoxicity against MCF-7, A549, HeLa, HT-29, PC-3 cell lines at a concentration of 50 μg / ml. Total flavonoid and phenolic contents of extracts were detected by AlCI3 and Folin-Ciocalteu methods, respectively. Analysis of phytochemical of CSEA, showing a strong anti-inflammatory activity with good antioxidant activity, was performed by LC-MS/MS. CSC exhibited the best antiproliferative activity against HeLa, HT-29, MCF-7 cell lines with 50.18%, 46.88%, 45.42% mortality, respectively. CSEA showed the highest antioxidant activity with IC50 values of 82.05 μg/ml and 108.4 μg/ml against ABTS and DPPH radicals, respectively. The highest total phenolic amounts have been determined in CSEA with value of 379.2 mg GAE/g extract. In the same way, the highest total flavonoid amounts have been observed in CSEA with values of 170.3 mg QE/g extract. CSEA showed strong anti-inflammatory activity with IC50 value of 0.10 μg/ml when compared to indomethacine as standard (22.39 μg/ml). Analysis of CSEA by LC-MS/MS revealed that the major compounds were quinic acid, 5-caffeoylquinic acid, apigenin C-hexoside-C-pentoside, p-coumaroylquinic acid, quercetin glucoside, di-caffeoylquinic acid, isorhamnetine glucoside, isorhamnetin glucuronide and isorhamnetin derivative. These results proved that CSEA has significant anti-inflammatory and antioxidant activity and CSC has good antiproliferatif activity. Also, the results demostrate that CSEA and CSC are a good source for further bioactivity-guided isolation in discovering new active antioxidant, anti-inflammatory and antiproliferative compounds.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1] Acet T. Determining the phenolic components by using HPLC and biological activity of Centaurea triumfetti. Plant Biosyst. 2021; 155(1): 159–164. [CrossRef]
  • [2] Moura LG, Tognon R, Nunes N S, Cataldi Rodrigues L, Ferreira AF, Kashima S, Covas D T, Santana M, Souto E X, Perobelli L, Simões BP, Dias-Baruffi M, Castro FA. Different expression patterns of LGALS1 and LGALS3 in polycythemia vera, essential thrombocythemia and primary myelofibrosis. J Clin Psychiatry. 2016; 69(10): 926-929. [CrossRef]
  • [3] Mans DR, da Rocha AB, Schwartsmann G. Anticancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anticancer compounds. Oncologist. 2000; 5(3): 185-198. [CrossRef]
  • [4] Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007; 9(12): 767-776. [CrossRef]
  • [5] Singh A, Mehta S, Baweja L, Ahirwal and P. Mehta. Anticancer activity of Andrographis paniculata and Silybum marianum on five human cancer cell lines. J Pharmacol Toxicol. 2013; 8(1): 42-48. [CrossRef]
  • [6] Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420: 860-867. [CrossRef]
  • [7] Mantovani A. Inflammation by remote control. Nature. 2005; 435(7043): 752-753. [CrossRef]
  • [8] Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995; 358(1): 1-3. [CrossRef]
  • [9] Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J. 2007; 401(1): 1-11. [CrossRef]
  • [10] Abdoua R, Shabana S, Ratebd ME. Terezine E, bioactive prenylated tryptophan analogue from an endophyte of Centaurea stoebe. Nat Prod Res. 2018; 34(4): 503-510. [CrossRef]
  • [11] Fernandez I, Pedro JR, Polo E. Sesquiterpene lactones from Centaurea alba and C. conifera. Phytochemistry. 1995; 38(3): 655-657 [CrossRef]
  • [12] Tackholm V, Student’s Flora of Egypt, second ed., Cairo University Press, Cairo, Egypt 1974.
  • [13] Maxia A, Lancioni MC, Balia AN, Alborghetti R, Pieroni A, Loi MC. Medical ethnobotany of the Tabarkins, a Northern Italian (Ligurian) minority in South-western Sardinia. Genet Resour Crop Evol. 2008; 55: 911-924. [CrossRef]
  • [14] Ghasemi Pirbalouti A, Momeni M, Bahmani, M. Ethnobotanıcal study of medicinal plants used by Kurd trıbe in Dehloran and Abdanan districts, Ilam province, Iran. Afr J Tradit Complement Altern Med. 2013; 10(2): 368-385. [CrossRef]
  • [15] Akgul A, Akgul A, Senol SG, Yildirim H, Secmen O, Dogan Y. An ethnobotanical study in Midyat (Turkey), a city on the silk road where cultures meet. J Ethnobiol Ethnomed. 2018; 14: 12. [CrossRef]
  • [16] Rivera D, Obon C, Inocencio C, Heinrich M, Verde A, Fajardo J, Llorach R. The ethnobotanical study of local mediterranean food plants as medicinal resources in Southern Spain. J Physiol Pharmacol. 2005; 56(1): 97-114.
  • [17] Amiri MS, Joharchi MR. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna J Phytomed. 2013; 3(3): 254-271. [CrossRef]
  • [18] Van Wyk BE, Gorelik B. The history and ethnobotany of Cape herbal teas. S Afr J Bot. 2017; 110: 18-38. [CrossRef]
  • [19] Safa O, Soltanipoor MA, Rastegar S, Kazemi M, Dehkordi KN, Ghannadi A. An ethnobotanical survey on hormozgan province, Iran. Avicenna J Phytomed. 2013; 3(1): 64-81. [CrossRef]
  • [20] Altundag E, Ozturk M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia Soc Behav Sci. 2011; 19: 756-777. [CrossRef]
  • [21] Khatun S, Parlak KU, Polat R, Cakilcioglu U. The endemic and rare plants of Maden (Elazig) and theiruses in traditional medicine. J Herb Med. 2012; 2: 68-75. [CrossRef]
  • [22] Dalar A. Plant taxa used in the treatment of diabetes in Van province, Turkey. Int J Second Metab. 2018; 5(3): 171-185. [CrossRef]
  • [23] Dalar A, Mukemre M, Unal M, Ozgokce F. Traditional medicinal plants of Ağrı province, Turkey. J Ethnopharmacol. 2018; 226(15): 56-72. [CrossRef]
  • [24] Zengin G, Aktumsek A, Guler GO, Cakmak YS, Yildiztugay E. Antioxidant properties of methanolic extract and fatty acid composition of Centaurea urvillei DC. subsp. hayekiana Wagenitz. Rec Nat Prod. 2011; 5(2): 123-132. [CrossRef]
  • [25] Sen A, Turan SO, Bitis L. Bioactivity-guided isolation of anti-proliferative compounds from endemic Centaurea kilaea. Pharm Biol. 2017; 55(1): 541-546. [CrossRef]
  • [26] Güven K, Çelik S, Uysal İ. Antimicrobial activity of Centaurea species. Pharm Biol. 2005; 43(1): 67-71. [CrossRef]
  • [27] Ozsoy N, Kultur S, Yilmaz‐Ozden T, Celik BO, Can A, Melikoglu G. Antioxidant, anti‐Inflammatory, acetylcholinesterase inhibitory and antimicrobial activities of Turkish endemic Centaurea antiochia var. praealta. J Food Biochem. 2015; 39(6): 771-776. [CrossRef]
  • [28] Altintas A, Kose YB, Kandemir A, Demirci B, Baser KHC. Composition of the essential oil of Centaurea saligna. Chem Nat Compd. 2009; 45(2): 276-277. [CrossRef]
  • [29] Hegnauer R. Chemotaxonomie der Pflanzen VIII. Birkha¨user- Verlag, Basel Boston, Berlin, 1989.
  • [30] Sen A, Kurkcuoglu M, Yildirim A, Senkardes I, Bitis L, Baser KHC. Chemical composition, antiradical, and enzyme inhibitory potential of essential oil obtained from aerial part of Centaurea pterocaula Trautv. J Essent Oil Res. 2020; 33(1): 44-52. [CrossRef]
  • [31] Suffness M, Pezzuto JM. Assays related to cancer drug discovery. In: Hostettmann, K. (Ed.). Methods in Plant Biochemistry: Assays for Bioactivity. Academic Press, London, 1990, pp. 71-133.
  • [32] Piluzza G, Bullitta S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm Biol. 2011; 49(3): 240-247. [CrossRef]
  • [33] Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal. 2011; 24(7): 1043-1048. [CrossRef]
  • [34] Zengin G, Bulut G, Mollica A, Picot-Allaind CMN, Mahomoodally MF. In vitro and in silico evaluation of Centaurea saligna (K.Koch) Wagenitz—An endemic folk medicinal plant. Comput Biol Chem. 2018; 73: 120-126. [CrossRef]
  • [35] Keser S, Keser F, Turkoglu I, Kaygılı Ö, Tekın S, Demir E, Karatepe M, Yılmaz O, Kırbag S, Sandal S, Turkoglu S. In vitro biological evaluation and phytochemical contents of three Centaurea L. species growing from Eastern Anatolia in Turkey. KSU J Agric Nat. 2020; 23(1): 148-156. [CrossRef]
  • [36] Aktumsek A, Zengin G, Guler GO, Cakmak YS, Duran A. Screening for in vitro antioxidant properties and fatty acid profiles of five Centaurea L. species from Turkey flora. Food Chem Toxicol. 2011; 49(11): 2914-2920. [CrossRef]
  • [37] Anvari D, Jamei R. Evaluation of antioxidant capacity and phenolic content in ethanolic extracts of leaves and flowers of some Asteraceae species. Recent Pat food, Nutr Agric. 2018; 9(1): 42-49. [CrossRef]
  • 38] Boğa M, Alkan H, Ertaş A, Oral EV, Yılmaz MA, Yeşil Y, Gören AC, Temel H, Kolak U. Phytochemical profile and some biological activities of three Centaurea species from Turkey. Trop J Pharm Res. 2016; 15(9): 1865-1875. [CrossRef]
  • [39] Erol-Dayi Ö, Pekmez M, Bona M, Aras-Perk A, Arda N. Total Phenolic contents, antioxidant activities and cytotoxicity of three Centaurea species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa and C. spicata. Free Radic Antioxid. 2011; 1(2): 31-36. [CrossRef]
  • [40] Hosseinimehr SJ, Pourmorad F, Shahabimajd N, Shahrbandy K, Hosseinzadeh R. In vitro antioxidant activity of Polygonium hyrcanicum, Centaurea depressa, Sambucus ebulus, Mentha spicata and Phytolacca americana. Pak J Biol Sci. 2007; 10(4): 637-640. [CrossRef]
  • [41] Albayrak S, Atasagun B, Aksoy A. Comparison of phenolic components and biological activities of two Centaurea sp. obtained by three extraction techniques. Asian Pac J Trop Med. 2017; 10(6): 599-606. [CrossRef]
  • [42] Sekerler T, Sen A, Bitis L, Sener A. Anticancer, antioxidant and anti-Inflammatory activities of chloroform extracts from some Centaurea species. Proceedings. 2018; 2(25), 1542. [CrossRef]
  • [43] Kose YB, Iscan G, Goger F, Akalın G, Demirci B, Baser KHC. Chemical composition and biological activity of Centaurea baseri: New species from Turkey. Chem Biodivers. 2016; 13(10): 1369-1379. [CrossRef]
  • [44] Kayacan S, Sener LT, Melikoglu G, Kultur S, Albeniz I, Ozturk M. Induction of apoptosis by Centaurea nerimaniae extract in HeLa and MDA-MB-231 cells by a caspase-3 pathway. Biotech Histochem. 2018; 93(5): 311-319. [CrossRef]
  • [45] Ostad SN, Rajabi A, Khademi R, Farjadmand F, Eftekhari M, Hadjiakhoondi A, Khanavi M. Cytotoxic potential of Centaurea bruguierana ssp. belangerana: The MTT assay. Acta Med Iran. 2016; 54(9): 583-589.
  • [46] Güvensen NC, Keskin D, Güneş H, Oktay MK, Yıldırım H. Antimicrobial property and antiproliferative activity of Centaurea babylonica (L.) L. on human carcinomas and cervical cancer cell lines. Ann Agric Environ Med. 2019; 26(2): 290-297. [CrossRef]
  • [47] Zeng K, Thompson KE, Yates CR, Miller DD. Synthesis and biological evaluation of quinic acid derivatives as antiinflammatory agents. Bioorganic Med Chem Lett. 2009; 19(18): 5458-5460. [CrossRef]
  • [48] Jang SA, Park DW, Kwon JE, Song HS, Park B, Jeon H, Sohn EH, Koo HJ, Kang SC. Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. Biomed Pharmacother. 2017; 96: 563-571. [CrossRef]
  • [49] Lee SY, Moon E, Kim SY, Lee KR. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia. Bioorganic Med Chem Lett. 2013; 23(7): 2140-2144. [CrossRef]
  • [50] Nam SY, Han NR, Rah SY, Seo Y, Kim HM, Jeong HJ. Anti-inflammatory effects of Artemisia scoparia and its active constituent, 3,5-dicaffeoyl-epi-quinic acid against activated mast cells. Immunopharmacol Immunotoxicol. 2018; 40(1): 52-58. [CrossRef]
  • [51] Motaal AA, Ezzat SM, Tadros MG, El-Askary HI. In vivo anti-inflammatory activity of caffeoylquinic acid derivatives from Solidago virgaurea in rats. Pharm Biol. 2016; 54(12): 2864-2870. [CrossRef]
  • [52] Zhao Z, Shin HS, Satsu H, Totsuka M, Shimizu M. 5-Caffeoylquinic acid and caffeic acid down-regulate the oxidative stress- and TNF-α-induced secretion of interleukin-8 from Caco-2 cells. J Agric Food Chem. 2008; 56(10): 3863-3868. [CrossRef]
  • [53] Segheto L, Santos BCS, Werneck AFL, Vilela FMP, Vieira de Sousa O, Rodarte MP. Antioxidant extracts of coffee leaves and its active ingredient 5-caffeoylquinic acid reduce chemically-induced inflammation in mice. Ind Crops Prod. 2018; 126: 48-57. [CrossRef]
  • [54] Ginwala R, Bhavsar R, Chigbu DGI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants. 2019; 8(2): 35. [CrossRef] [55] Ali F, Rahul, Naz F, Jyoti S, Siddique YS. Health functionality of apigenin: A review. Int J Food Prop. 2017; 20(6): 1197-1238. [CrossRef]
  • [56] Chiang LC, Ng LT, Lin IC, Kuo PL, Lin CC. Anti-proliferative effect of apigenin and its apoptoticinduction in human Hep G2 cells. Cancer Lett. 2006; 237(2): 207-214. [CrossRef]
  • [57] Braganhol E, Zamin LL, Canedo AD, Horn F, Tamajusuku ASK, Wink MR, Salbego C, Battastini AMO. Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anticancer Drugs. 2006; 17(6): 663-671. [CrossRef]
  • [58] Kleemann R, Verschuren L, Morrison M, Zadelaar S, Erk MJ, Wielinga PY, Kooistra T. Anti-inflammatory, antiproliferative and anti-atherosclerotic effects of quercetin in human in vitro and in situ models. Atherosclerosis. 2011; 218(1): 44-52. [CrossRef]
  • [59] Zou Y, Chang SK, Gu Y, Qian SY. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. morton) extract and its fractions. J Agric Food Chem. 2011; 59(6): 2268-2276. [CrossRef]
  • [60] Phosrithong N, Nuchtavorn N. Antioxidant and anti-inflammatory activites of Clerodendrum leaf extracts collected in Thailand. Eur J Integr Med. 2016; 8(3): 281-285. [CrossRef]
  • [61] Yıldırım A, Şen A, Doğan A, Bitis L . Antioxidant and anti-inflammatory activity of capitula, leaf and stem extracts of Tanacetum cilicicum (Boiss.) Grierson. Int J Second Metab. 2019; 6(2): 211-222. [CrossRef]
  • [62] Gao X, Ohlander M, Jeppsson N, Björk L, Trajkovski V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of Sea Buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem. 2000; 48(5): 1485-1490. [CrossRef]
  • [63] Zhang R, Zeng Q, Deng Y, Zhang M, Wei Z, Zhang Y, Tang X. Phenolic profiles and antioxidant activity of litchipulp of different cultivars cultivated in Southern China. Food Chem. 2013; 136(3-4): 1169–1176. [CrossRef]
  • [64] Csapi B, Hajdú Z, Zupkó I, Berényi A, Forgo P, Szabó P, Hohmann J. Bioactivity-guided isolation of antiproliferative compounds from Centaurea arenaria. Phytother Res. 2010; 24(11): 1664-1669. [CrossRef]
  • [65] Zengin G, Zheleva-Dimitrova D, Gevrenova R, Nedialkov P, Mocan A, Ćirić A, Glamočlija J, Soković M, Aktumsek A, Mahomoodallye MF. Identification of phenolic components via LC–MS analysis and biological activities of two Centaurea species: C. drabifolia subsp. drabifolia and C. lycopifolia. J Pharm Biomed. 2018; 149: 436-441. [CrossRef]
  • [66] Bakr RO, Mohamed SAEH, Ayoub N. Phenolic profile of Centaurea aegyptiaca L. growing in Egypt and its cytotoxic and antiviral activities. Afr J Tradit Complement Altern Med. 2016; 13(6): 135-143. [CrossRef]
APA Yıldırım A, Sen A, Göger F, Bingöl Özakpınar Ö, Bitis L (2022). In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. , 163 - 173. 10.29228/jrp.113
Chicago Yıldırım Aybeniz,Sen Ali,Göger Fatih,Bingöl Özakpınar Özlem,Bitis Leyla In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. (2022): 163 - 173. 10.29228/jrp.113
MLA Yıldırım Aybeniz,Sen Ali,Göger Fatih,Bingöl Özakpınar Özlem,Bitis Leyla In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. , 2022, ss.163 - 173. 10.29228/jrp.113
AMA Yıldırım A,Sen A,Göger F,Bingöl Özakpınar Ö,Bitis L In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. . 2022; 163 - 173. 10.29228/jrp.113
Vancouver Yıldırım A,Sen A,Göger F,Bingöl Özakpınar Ö,Bitis L In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. . 2022; 163 - 173. 10.29228/jrp.113
IEEE Yıldırım A,Sen A,Göger F,Bingöl Özakpınar Ö,Bitis L "In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz." , ss.163 - 173, 2022. 10.29228/jrp.113
ISNAD Yıldırım, Aybeniz vd. "In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz". (2022), 163-173. https://doi.org/10.29228/jrp.113
APA Yıldırım A, Sen A, Göger F, Bingöl Özakpınar Ö, Bitis L (2022). In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. Journal of research in pharmacy (online), 26(1), 163 - 173. 10.29228/jrp.113
Chicago Yıldırım Aybeniz,Sen Ali,Göger Fatih,Bingöl Özakpınar Özlem,Bitis Leyla In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. Journal of research in pharmacy (online) 26, no.1 (2022): 163 - 173. 10.29228/jrp.113
MLA Yıldırım Aybeniz,Sen Ali,Göger Fatih,Bingöl Özakpınar Özlem,Bitis Leyla In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. Journal of research in pharmacy (online), vol.26, no.1, 2022, ss.163 - 173. 10.29228/jrp.113
AMA Yıldırım A,Sen A,Göger F,Bingöl Özakpınar Ö,Bitis L In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. Journal of research in pharmacy (online). 2022; 26(1): 163 - 173. 10.29228/jrp.113
Vancouver Yıldırım A,Sen A,Göger F,Bingöl Özakpınar Ö,Bitis L In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz. Journal of research in pharmacy (online). 2022; 26(1): 163 - 173. 10.29228/jrp.113
IEEE Yıldırım A,Sen A,Göger F,Bingöl Özakpınar Ö,Bitis L "In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz." Journal of research in pharmacy (online), 26, ss.163 - 173, 2022. 10.29228/jrp.113
ISNAD Yıldırım, Aybeniz vd. "In vitro antiproliferative, antioxidant, anti-inflammatory activities and phenolic profile of Centaurea saligna (K.Koch) Wagenitz". Journal of research in pharmacy (online) 26/1 (2022), 163-173. https://doi.org/10.29228/jrp.113