Yıl: 2021 Cilt: 30 Sayı: 5 Sayfa Aralığı: 681 - 697 Metin Dili: İngilizce DOI: 10.3906/yer-2104-22 İndeks Tarihi: 17-06-2022

Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data

Öz:
We have studied the spatiotemporal evolution of surface deformation in Konya city and its vicinity using advanced multitemporal synthetic aperture radar techniques with SAR data acquired by Envisat, ALOS-1, and Sentinel-1 A/B satellites between 2004 and 2020. Velocity maps and time series show that the city has been subsiding with varying rates in space and time since 2004. The pattern of deformation shows two main lobes of subsidence centered in the western and eastern sides of the city with a nondeforming north-south trending narrow zone in between. Subsidence rate increases from a few cm/yr to 11 cm/yr between 2014 and 2019. As of 2019, subsidence has slowed down dramatically, giving rise to uplift in some places. Spatiotemporal variation of subsidence and its strong correlation with change in water table level confirm the inferences that subsidence in the metropolitan area of Konya is due to over drafting of the ground water for urban needs. The decrease in subsidence rate over the last two years appearsto be due to the city’s residents supplying their water from recently built dams instead of aquifers beneath the city. Initial excessive groundwater extraction in agricultural areas caused ~4 m drops every year in the water table level, which, in turn, gave rise to 8 cm subsidence every year. Modeling of the subsidence shows 7.7 x 106 m3 /yr volume loss due to compaction of the aquifer in the Konya metropolitan area and its vicinity between 2014 and 2018.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aksoy R, Demiröz A (2012). The Konya earthquakes of 10–11 September 2009 and soil conditions in Konya, Central Anatolia, Turkey. Natural Hazards and Earth System Sciences 12 (2): 295–303. doi: 10.5194/nhess-12-295-2012
  • Amelung F, Galloway DL, Bell JW, Zebker HA, Laczniak RJ (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6): 483-486. doi: 10.1130/0091-7613(1999)027
  • Aslan G, Cakir Z, Ergintav S, Lasserre C, Renard F (2018). Analysis of secular ground motions in Istanbul from a long-term InSAR timeseries (1992–2017). Remote Sensing 10 (3): 408. doi: 10.3390/rs10030408
  • Aslan G, Cakir Z, Lasserre, C, Renard F (2019). Investigating subsidence in the Bursa Plain, Turkey, using ascending and descending Sentinel-1 satellite data. Remote Sensing 11 (1): 85. doi: 10.3390/rs11010085
  • Bekaert DPS, Hamlington BD, Buzzanga B, Jones CE (2017). Spaceborne synthetic aperture radar survey of subsidence in Hampton Roads, Virginia (USA). Scientific reports 7 (1): 1-9. doi: 10.1038/s41598- 017-15309-5
  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40 (11): 2375–2383. doi: 10.1109/TGRS.2002.803792
  • Berke MÖ, Dıvrak BB, Sarısoy HD (2014). Konya’da suyun bugünü raporu. WWF-Türkiye (Doğal Hayatı Koruma Vakfı) (in Turkish)
  • Caló F, Notti D, Galve JP, Abdikan S, Görüm T et al. (2017). DinsarBased detection of land subsidence and correlation with groundwater depletion in Konya Plain, Turkey. Remote sensing 9(1): 83. doi: 10.3390/rs9010083
  • Castellazzi P, Garfias J, Martel R, Brouard C, Rivera A (2017). InSAR to support sustainable urbanization over compacting aquifers: The case of Toluca Valley, Mexico. International journal of applied earth observation and geoinformation 63: 33-44. doi: 10.1016/j.jag.2017.06.011
  • Comut FC, Ustun A, Lazecky M, Perissin D (2016). Capability of detecting rapid subsidence with Cosmo SkyMed and Sentinel-1 dataset over Konya city. In: The ESA Living Planet Symposium ESA SP740; Prague, Czech Republic. pp. 9-13.
  • Du Z, Ge L, Ng AHM, Zhu Q, Yang X et al. (2018). Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images. International Journal of Applied Earth Observation and Geoinformation 67: 54-68. doi: 10.1016/j.jag.2018.01.001
  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş et al. (2013). Active Fault Map of Turkey with and Explanatory Text, General Directorate of Mineral Research and Exploration, Special Publication Series 30, Ankara, Turkey.
  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R et al. (2007). The shuttle radar topography mission. Reviews of Geophysics: 45 (2). doi: 10.1029/2005RG000183
  • Fernandez J, Prieto JF, Escayo J, Camacho AG, Luzón F et al. (2018). Modeling the two-and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications. Scientific reports 8 (1): 1-14. doi: 10.1038/s41598-018-33128-0
  • Ferretti A, Prati C, Rocca F (2001). Permanent Scatterers in SAR Interferometry. EEE Transactions on Geoscience and Remote Sensing 39 (1): 8-20. doi: 10.1109/36.898661
  • Figueroa-Miranda S, Tuxpan-Vargas J, Ramos-Leal JA, HernándezMadrigal VM, Villaseñor-Reyes CI (2018). Land subsidence by groundwater over-exploitation from aquifers in tectonic valleys of Central Mexico: A review. Engineering Geology 246: 91-106. doi: 10.1016/j.enggeo.2018.09.023
  • Gabriel A K, Goldstein RM, Zebker H A (1989). Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research: Solid Earth 94 (B7): 9183-9191. doi: 10.1029/JB094iB07p09183.
  • Haghighi MH, Motagh M (2018). Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long- term multi-sensor InSAR analysis. Remote Sensing of Environment 221: 534-550. doi: 10.1016/j.rse.2018.11.003
  • Hakyemez HY, Elibol E, Umut M, Bakırhan B, Dağıstan H et al. (1992). Geology of the Çumra Akören (Konya). MTA Report 9449, pp. 63, Ankara.
  • Hooper A (2008). A Multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters 35(16). doi: 10.1029/2008GL034654
  • Hooper A, Bekaert D, Spaans K, Arıkan M (2011). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonics 514-517: 1-13. doi: 10.1016/j.tecto.2011.10.013
  • Imamoglu M, Kahraman F, Cakir Z, Sanli FB (2019). Ground deformation analysis of Bolvadin (W. Turkey) by means of multitemporal InSAR techniques and Sentinel-1 data. Remote Sensing 11(9): 1069. doi: 10.3390/rs11091069
  • Kampes B, Stefania, U (1999). The Delft Object-Oriented Radar Interferometric Software. In: The 2nd International Symposium on Operationalization of Remote Sensing, Enschede; Netherlands. pp. 16.
  • Khorrami M, Abrishami S, Maghsoudi Y, Alizadeh B, Perissin D (2020). Extreme subsidence in a populated city (Mashhad) detected by PSInSAR considering groundwater withdrawal and geotechnical properties. Scientific Reports 10 (1): 1-16. doi: 10.1038/s41598- 020-67989-1
  • Koçyiğit A, Ünay E, Saraç G (2000). Episodic graben formation and extensional neotectonic regime in west central Anatolia and Isparta Angle; a case study in the Akşehir-Afyon graben, Turkey, in Tectonics and magmatism in Turkey and surrounding area. In: Bozkurt E, Winchester JA, Piper JDA (editors). Special Publication, London: Geological Society, pp 405–421.
  • Maerten F, Resor P, Pollard D, Maerten L (2005). Inverting for Slip on Three-Dimensional Fault Surfaces Using Angular Dislocations. Bulletin of the Seismological Society of America 95 (5): 1654-1665. doi: 10.1785/0120030181
  • Motagh M, Shamshiri R, Haghighi MH, Wetzel HU, Akbari B et al. (2017). Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time- series and in situ measurements. Engineering Geology 218: 134–151. doi: 10.1016/j.enggeo.2017.01.011
  • Motagh M, Walter TR, Sharifi MA, Fielding E, Schenk A et al. (2008). Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters 35 (16): doi: 10.1029/2008GL033814
  • Okada Y (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 75 (4): 1135-1154.
  • Orhan O (2021). Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environmental Monitoring and Assessment 193 (4): 1-17. doi: 10.1007/s10661-021-08962-x
  • Orhan, O, Oliver-Cabrera, T, Wdowinski, S, Yalvac, S, Yakar, M (2021). Land subsidence and its relations with sinkhole activity in Karapınar region, Turkey: a multi-sensor InSAR time series study. Sensors 21 (3) : 774.
  • Peduto D, Cascini L, Arena L, Ferlisi S, Fornaro G et al. (2015). A general framework and related procedures for multiscale analyses of DInSAR data in subsiding urban areas. ISPRS Journal of Photogrammetry and Remote Sensing 105: 186-210. doi: 10.1016/j.isprsjprs.2015.04.001
  • Riel B, Simons M, Ponti D, Agram P, Jolivet R (2018). Quantifying ground deformation in the Los Angeles and Santa Ana Coastal Basins due to groundwater withdrawal. Water Resources Research 54 (5): 3557-3582. doi: 10.1029/2017WR021978
  • Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN et al. (2000). Synthetic aperture radar interferometry. Institute of Electrical and Electronics Engineers 88 (3): 333–382. doi: 10.1109/5.838084
  • Rosi A, Tofani V, Agostini A, Tanteri L, Stefanelli CT et al. (2016). Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy). International Journal of Applied Earth Observation and Geoinformation 52: 328-337. doi: 10.1016/j.jag.2016.07.003
  • Sandwell D, Mellors R, Tong X, Wei M, Wessel P (2011) Open Radar Interferometry Software for Mapping Surface Deformation. Eos, Transactions American Geophysical Union 92 (28): 234. doi: 10.1029/2011EO280002
  • Şengör AMC (1980). Principles of neotectonics of Turkey. In: Geological Society of Turkey Conference Series 2, pp. 40, Ankara.
  • Şengör AMC, Yılmaz Y (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 75: 181-241.
  • Thomas AL (1993). Poly3D: a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the earth's crust. M.S. Thesis, Stanford University, Stanford, California, 221p
  • Ustun A, Tusat E, Yalvac S (2010). Preliminary results of land subsidence monitoring project in Konya Closed Basin between 2006–2009 by means of GNSS observations. Natural Hazards and Earth System Sciences 10 (6): 1151-1157. doi: 10.5194/nhess-10-1151-2010
  • Ustun A, Tuşat E, Yalvaç S, Özkan İ, Eren Y, Özdemir A, Bildirici İÖ, Üstüntaş T, Kırtıloğlu OS, Mesutoğlu M (2015). Land subsidence in Konya Closed Basin and its spatio-temporal detection by GPS and DInSAR. Environ. Earth Science 73:6691–6703. doi: 10.1007/s12665-014-3890-5
APA ŞİRECİ N, ASLAN G, ÇAKIR Z (2021). Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. , 681 - 697. 10.3906/yer-2104-22
Chicago ŞİRECİ Nurdan,ASLAN Gokhan,ÇAKIR Ziyadin Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. (2021): 681 - 697. 10.3906/yer-2104-22
MLA ŞİRECİ Nurdan,ASLAN Gokhan,ÇAKIR Ziyadin Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. , 2021, ss.681 - 697. 10.3906/yer-2104-22
AMA ŞİRECİ N,ASLAN G,ÇAKIR Z Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. . 2021; 681 - 697. 10.3906/yer-2104-22
Vancouver ŞİRECİ N,ASLAN G,ÇAKIR Z Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. . 2021; 681 - 697. 10.3906/yer-2104-22
IEEE ŞİRECİ N,ASLAN G,ÇAKIR Z "Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data." , ss.681 - 697, 2021. 10.3906/yer-2104-22
ISNAD ŞİRECİ, Nurdan vd. "Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data". (2021), 681-697. https://doi.org/10.3906/yer-2104-22
APA ŞİRECİ N, ASLAN G, ÇAKIR Z (2021). Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. Turkish Journal of Earth Sciences, 30(5), 681 - 697. 10.3906/yer-2104-22
Chicago ŞİRECİ Nurdan,ASLAN Gokhan,ÇAKIR Ziyadin Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. Turkish Journal of Earth Sciences 30, no.5 (2021): 681 - 697. 10.3906/yer-2104-22
MLA ŞİRECİ Nurdan,ASLAN Gokhan,ÇAKIR Ziyadin Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. Turkish Journal of Earth Sciences, vol.30, no.5, 2021, ss.681 - 697. 10.3906/yer-2104-22
AMA ŞİRECİ N,ASLAN G,ÇAKIR Z Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. Turkish Journal of Earth Sciences. 2021; 30(5): 681 - 697. 10.3906/yer-2104-22
Vancouver ŞİRECİ N,ASLAN G,ÇAKIR Z Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data. Turkish Journal of Earth Sciences. 2021; 30(5): 681 - 697. 10.3906/yer-2104-22
IEEE ŞİRECİ N,ASLAN G,ÇAKIR Z "Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data." Turkish Journal of Earth Sciences, 30, ss.681 - 697, 2021. 10.3906/yer-2104-22
ISNAD ŞİRECİ, Nurdan vd. "Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data". Turkish Journal of Earth Sciences 30/5 (2021), 681-697. https://doi.org/10.3906/yer-2104-22