Yıl: 2021 Cilt: 30 Sayı: 4 Sayfa Aralığı: 536 - 550 Metin Dili: İngilizce DOI: 10.3906/yer-2101-21 İndeks Tarihi: 17-06-2022

A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey

Öz:
Geothermal energy constitutes an important renewable resource in Turkey that has been extensively utilized for heating buildings, power generation, greenhouse farming and various other industries. One of the most remarkable geothermal locations in Turkey is the low-enthalpy area of Afyon, where five main low-temperature (30–110 ℃) geothermal fields are exploited. However, further exploration drilling sites have proven inconclusive, casting doubts on the effective presence of high-temperature geothermal systems in the region. Part of the challenge is that the geometry, size and depth of the heat source of the geothermal system is poorly constrained. It is documented that the Afyon region hosts voluminous and well-preserved potassic/ultrapotassic volcanic successions that formed between 15 and 8 Ma. It is also well known that volcanoes are fed by magma chambers and reservoirs which can be linked to fault zones and geothermal systems. In this study, the origin of the geothermal systems in Afyon is explored by considering the maximum recorded well-head temperature of 110 ℃ and the estimated reservoir temperature of 125 ℃ from hydrochemistry data. The calculated and measured temperatures are interpreted in terms of thermal finite element method models.Various thermal models illustrate the possible temperature distribution throughout the crust assuming an arrangement of a crustal magma chamber and a geothermal gradient of 30 ℃/km. Results show that the temperature of the fluids at the measured well-head temperature of 110 ℃, or estimated reservoir temperature of 125 ℃, require the presence of a magma chamber with a temperature in the range 600–800 ℃ at a depth of 5–7.5 km. These two-dimensional models that simulate crustal geothermal gradients can be used with suitable modifications, to advance the understanding of other geothermal fields.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akkuş İ, Akıllı H, Ceyhan S, Dilemre A, Tekin Z (2005). Turkey geothermal inventory. Serie 201: 849.
  • Annen C (2009). From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth and Planetary Science Letters 284 (3-4): 409-416.
  • Arnórsson S (1995). Geothermal systems in Iceland: structure and conceptual models—I. High-temperature areas. Geothermics 24 (5-6): 561-602.
  • Aydın İ, Karat Hİ, Koçak A (2005). Curie-point depth map of Turkey. Geophysical Journal International 162 (2): 633-640.
  • Başaran C, Gökgöz A (2016). Hydrochemical and isotopic properties of Heybeli geothermal area (Afyon, Turkey). Arabian Journal of Geosciences 9 (11): 586.
  • Basaran C, Yildiz A, Duysak S (2020). Hydrochemistry and geological features of a new geothermal field, Bayatcık (Afyonkarahisar/ Turkey). Journal of African Earth Sciences 103812.
  • BerkBiryol C, Beck SL, Zandt G, Özacar AA (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International 184 (3): 1037-1057.
  • Bertani R (2016). Geothermal power generation in the world 2010– 2014 update report. Geothermics 60: 31-43.
  • Caricchi L, Annen C, Blundy J, Simpson G, Pinel V (2014). Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nature Geoscience 7 (2): 126-130
  • Chestler SR, Grosfils EB (2013). Using numerical modeling to explore the origin of intrusion patterns on Fernandina volcano, Galápagos Islands, Ecuador. Geophysical Research Letters 40 (17): 4565-4569.
  • Corrado G, De Lorenzo S, Mongelli F, Tramacere A, Zito G (1998). Surface heat flow density at the Phlegrean Fields caldera (Southern Italy). Geothermics 27 (4): 469-484.
  • Costa F, Dohmen R, Chakraborty S (2008). Time scales of magmatic processes from modeling the zoning patterns of crystals. Reviews in Mineralogy and Geochemistry 69 (1): 545-594.
  • De Silva SL, Gregg PM (2014). Thermomechanical feedbacks in magmatic systems: Implications for growth, longevity, and evolution of large caldera-forming magma reservoirs and their supereruptions. Journal of Volcanology and Geothermal Research 282: 77-91.
  • Deb D (2006). Finite Element Method, Concepts and Applications in Geomechanics. New Delhi, India: PHI Learning Private Limited.
  • Degruyter W, Huber C (2014). A model for eruption frequency of upper crustal silicic magma chambers. Earth and Planetary Science Letters 403: 117-130.
  • Demer S, Memiş Ü (2019). Heybeli (Afyonkarahisar) jeotermal alanı hidrojeokimyasal özellikleri ve jeotermometre uygulamaları. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 (1): 1-7 (in Turkish).
  • Demer SA, Memiş Ü, Özgür N (2013). Investigation of hydrogeochemical properties of the Hüdai (Afyon-Sandıklı) geothermal systems, SW Turkey. Journal of Earth System Science 122 (4): 1081-1089.
  • DiPippo R (1980). Geothermal Energy as a Source of Electric Power. Washington, DC, USA: U.S. Government Printing Office.
  • Erkül F, Karaoğlu Ö, Tatar Erkül S, Varol E (2018). Trachyte volcanism in Afyon and Emirdağ regions and its link with slabtear processes: Tectonic Evolution. In: Geological Congress of Turkey; Ankara, Turkey. pp. 523-524.
  • Ersoy YE, Helvacı C, Uysal İ, Karaoğlu Ö, Palmer MR et al. (2012). Petrogenesis of the miocene volcanism along the İzmir-Balıkesir transfer zone in western Anatolia, Turkey: implications for origin and evolution of potassic volcanism in post-collisional areas. Journal of Volcanology and Geothermal Research 241: 21-38.
  • Faulds JE, Coolbaugh MF, Vice GS, Edwards ML (2006). Characterizing structural controls of geothermal fields in the northwestern Great Basin: a progress report. Geothermal Resources Council Transactions 30: 69-76.
  • Gelman, SE, Gutierrez FJ, Bachmann O (2013). On the longevity of large upper crustal silicic magma reservoirs. Geology 41 (7): 759-762.
  • Gerbault M, Cappa F, Hassani R (2012). Elasto-plastic and hydromechanical models of failure around an infinitely long magma chamber. Geochemistry, Geophysics, Geosystems 13 (3). Giggenbach WF (1988). Geothermal solute equilibria. Derivation of Na–K–Ca–Mg geoindicators. Geochimica et Cosmochimica Acta 52: 2749-2765.
  • Göcmez G, Kara I (2005). Geological and Hydrogeological Study of Afyon-Gazligöl Geothermal Field, Turkey. In: Proceedings World Geothermal Congress; Antalya, Turkey. pp. 1-5.
  • Gudmundsson A (2011). Rock Fractures in Geological Processes. Cambridge, UK: Cambridge University Press.
  • Gudmundsson A (2012). Magma chambers: formation, local stresses, excess pressures, and compartments. Journal of Volcanology and Geothermal Research 237: 19-41.
  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004). Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14 (4/5): 4-12.
  • Goff F, Janik CJ (2000). Geothermal systems. Encyclopedia of Volcanoes 817-834.
  • Gülmez F, Damcı E, Ülgen UB, Okay A. (2019). Deep Structure of Central Menderes Massif: data from deep geothermal wells. Turkish Journal of Earth Sciences 28: 531-543.
  • Grant MA (1996). Geothermal Resource Management. Auckland, NewZealand: Geothermal Energy New Zealand, Ltd.
  • Henley RW, Ellis AJ (1983). Geothermal systems ancient and modern: a geochemical review. Earth-Science Reviews 19 (1): 1-50.
  • Hochstein MP, Browne PRL (2000). Surface manifestations of geothermal systems with volcanic heat sources. Encyclopedia of Volcanoes 1: 835-855.
  • Jaeger JC (1959). Temperatures outside a cooling intrusive sheet. American Journal of Science 257 (1): 44-54.
  • Kalafat D, Görgün E (2017). An example of triggered earthquakes in western Turkey: 2000–2015 Afyon-Akşehir Graben earthquake sequences. Journal of Asian Earth Sciences 146: 103-113.
  • Karakas O, Degruyter W, Bachmann O, Dufek J (2017). Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geoscience 10 (6): 446.
  • Karaoğlu Ö, Helvacı C (2014). Isotopic evidence for a transition from subduction to slab-tear related volcanism in western Anatolia, Turkey. Lithos 192: 226-239.
  • Karaoğlu Ö, Browning J, Bazargan M, Gudmundsson A (2016). Numerical modelling of triple-junction tectonics at Karlıova, Eastern Turkey, with implications for regional transport. Earth and Planetary Science Letters 452: 157-170.
  • Karaoğlu Ö, Browning J, Salah MK, Elshaafi A, Gudmundsson A (2018). Depths of magma chambers at three volcanic provinces in the Karlıova region of Eastern Turkey. Bulletin of Volcanology 80 (9): 1-17.
  • Karaoğlu Ö, Bazargan M, Baba A, Browning J (2019). Thermal fluid circulation around the Karliova triple junction: Geochemical features and volcano-tectonic implications (Eastern Turkey). Geothermics 81: 168-184.
  • Karaoğlu Ö, Bayer Ö, Turgay MB, Browning J (2020). Thermomechanical interactions between crustal magma chambers in complex tectonic environments: insights from Eastern Turkey. Tectonophysics 793: 228607.
  • Keçebaş A (2011). Performance and thermo-economic assessments of geothermal district heating system: a case study in Afyon, Turkey. Renewable Energy 36 (1): 77-83.
  • Koçyiğit A, Saraç G (2000). Episodic graben formation and extensional neotectonic regime in west Central Anatolia and the Isparta Angle: a case study in the Akşehir-Afyon Graben, Turkey. Geological Society, London, Special Publications 173 (1): 405-421.
  • Le Corvec N, Menand T, Lindsay J (2013). Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: an experimental approach. Journal of Geophysical Research: Solid Earth 118 (3): 968-984.
  • Lemnifi AA, Browning J, Elshaafi A, Aouad NS, Yu Y (2019). Receiver function imaging of mantle transition zone discontinuities and the origin of volcanism beneath Libya. Journal of Geodynamics 124: 93-103.
  • Memiş Ü, Demer S, Özgür N (2010). Afyon-Sandıklı Hüdai jeotermal sisteminin rezervuar sıcaklığının araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14 (3): 293-299 (in Turkish).
  • Mutlu H (1997). Gazlıgöl (Afyon) termal ve maden sularının jeokimyasal özellikleri ve jeotermometre uygulamaları. MTA, Jeoloji Mühendisliği 50: 1-7 (in Turkish).
  • Mutlu H (1998). Chemical geothermometry and fluid–mineral equilibria for the Ömer–Gecek thermal waters, Afyon area, Turkey. Journal of Volcanology and Geothermal Research 80 (3-4): 303-321.
  • Nabelek PI, Hofmeister AM, Whittington AG(2012). The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth and Planetary Science Letters 317-318: 157- 164.
  • Öngür T (1973). Sandıklı (Afyon) jeotermal araştırma bölgesine ilişkin jeolojik durum ve jeotermal enerji olanakları. Maden Tetkik ve Arama Genel Müdürlüğü (MTA) Rapor 5520. Ankara, Turkey: MTA (in Turkish).
  • Prelević D, Akal C, Romer RL, Mertz-Kraus R, Helvacı C (2015). Magmatic response to slab tearing: constraints from the Afyon Alkaline Volcanic Complex, Western Turkey. Journal of Petrology 56 (3): 527-562.
  • Rodríguez C, Geyer A, Castro A, Villaseñor A (2015). Natural equivalents of thermal gradient experiments. Journal of Volcanology and Geothermal Research 298: 47-58.
  • Şahin AŞ, Yazıcı H (2012). Thermodynamic evaluation of the Afyon geothermal district heating system by using neural network and neuro-fuzzy. Journal of Volcanology and Geothermal Research 233: 65-71.
  • Schoene B, Schaltegger U, Brack P, Latkoczy C, Stracke A et al. (2012). Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–PbTIMS-TEA, Adamello batholith, Italy. Earth and Planetary Science Letters 355: 162- 173.
  • Tabatabaian M (2014). COMSOL for Engineers. Herndon, VA, USA: Mercury Learning and Information.
  • Weber J, Ganz B, Schellschmidt R, Sanner B, Schulz R (2015).
  • Geothermal energy use in Germany. In: Proceedings World Geothermal Congress; Melbourne, Australia. pp. 1-15.
  • Whittington AG, Hofmeister AM, Nabelek PI (2009). Temperaturedependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458 (7236): 319-321.
  • Yıldız A, Başaran C, Bağcı M, Gümüş A, Çonkar FE et al. (2018). The measurement of soil gases and shallow temperature for determination of active faults in a geothermal area: a case study from Ömer–Gecek, Afyonkarahisar (West Anatolia). Arabian Journal of Geosciences 11 (8): 175.
  • Yıldız A, Başaran C, Bağcı M, Dülger A, Ulutürk Y (2020). Borehole Geology and Alteration Mineralogy of Well Bayatcık-1, Bayatcık Geothermal Area, Afyonkarahisar. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 20 (4): 683- 692 (in Turkish).
  • Zienkiewicz OC (1979). The Finite Element Method. New York, NY, USA: McGraw–Hill, p. 787.
APA Karaoğlu Ö (2021). A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. , 536 - 550. 10.3906/yer-2101-21
Chicago Karaoğlu Özgür A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. (2021): 536 - 550. 10.3906/yer-2101-21
MLA Karaoğlu Özgür A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. , 2021, ss.536 - 550. 10.3906/yer-2101-21
AMA Karaoğlu Ö A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. . 2021; 536 - 550. 10.3906/yer-2101-21
Vancouver Karaoğlu Ö A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. . 2021; 536 - 550. 10.3906/yer-2101-21
IEEE Karaoğlu Ö "A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey." , ss.536 - 550, 2021. 10.3906/yer-2101-21
ISNAD Karaoğlu, Özgür. "A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey". (2021), 536-550. https://doi.org/10.3906/yer-2101-21
APA Karaoğlu Ö (2021). A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. Turkish Journal of Earth Sciences, 30(4), 536 - 550. 10.3906/yer-2101-21
Chicago Karaoğlu Özgür A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. Turkish Journal of Earth Sciences 30, no.4 (2021): 536 - 550. 10.3906/yer-2101-21
MLA Karaoğlu Özgür A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. Turkish Journal of Earth Sciences, vol.30, no.4, 2021, ss.536 - 550. 10.3906/yer-2101-21
AMA Karaoğlu Ö A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. Turkish Journal of Earth Sciences. 2021; 30(4): 536 - 550. 10.3906/yer-2101-21
Vancouver Karaoğlu Ö A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey. Turkish Journal of Earth Sciences. 2021; 30(4): 536 - 550. 10.3906/yer-2101-21
IEEE Karaoğlu Ö "A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey." Turkish Journal of Earth Sciences, 30, ss.536 - 550, 2021. 10.3906/yer-2101-21
ISNAD Karaoğlu, Özgür. "A numerical approach to verify the reservoir temperature of the Afyon geothermal fields, Turkey". Turkish Journal of Earth Sciences 30/4 (2021), 536-550. https://doi.org/10.3906/yer-2101-21