Yıl: 2021 Cilt: 30 Sayı: 4 Sayfa Aralığı: 551 - 560 Metin Dili: İngilizce DOI: 10.3906/yer-2007-19 İndeks Tarihi: 17-06-2022

Classification of plutonic rock types using thin section images with deep transfer learning

Öz:
Classification of rocks is one of the basic parts of geological research and is a difficult task due to the heterogeneous properties of rocks. This process is time consuming and requires sufficiently knowledgeable and experienced specialists in the field of petrography. This paper has a novelty in classifying plutonic rock types for the first time using thin section images; and proposes an approach that uses the deep learning method for automatic classification of 12 types of plutonic rocks. Convolutional neural network based DenseNet121, which is one of the deep learning architectures, is used to extract the features from thin section images of rocks; and the classification process is carried out with a single layer fully connected neural network. The deep learning model is trained and tested on 2400 images. AUC, accuracy, precision, recall and f1-score are used as performance measure. The proposed approach classifies plutonic rock images on the test set with an average accuracy of 97.52% and a maximum of 98.19%. Thus, the applied deep transfer learning is promising in geosciences and can be used to identify rock types quickly and accurately.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Baraboshkin EE, Ismailova LS, Orlov DM, Zhukovskaya EA, Kalmykov GA et al. (2020).Deep convolutions for in-depth automated rock typing. Computers & Geosciences 135: 104330. doi: 10.1016/j.cageo.2019.104330
  • Baykan NA, Yılmaz N (2010). Mineral identification using color spaces and artificial neural networks. Computers & Geosciences 36 (1): 91-97. doi: 10.1016/j.cageo.2009.04.009
  • Chatterjee S (2013).Vision-based rock-type classification of limestone using multi-class support vector machine. Applied Intelligence 39: 14-27. doi: 10.1007/s10489-012-0391-7
  • Cheng G, Guo W (2017). Rock images classification by using deep convolution neural network. Journal of Physics: Conference Series 887: 1-6.
  • Duarte-Coronado D, Tellez-Rodriguez J, Lima RPD, Marfurt K, Slatt R (2019). Deep convolutional neural networks as an estimator of porosity in thin-section images for unconventional reservoirs. SEG Technical Program Expanded Abstracts 3181- 3184. doi: 10.1190/segam2019-3216898.1
  • Fawcett T (2006). An introduction to ROC analysis. Pattern Recognition Letters 27 (8): 861-874. doi: 10.1016/j. patrec.2005.10.010
  • Goodfellow I, Bengio Y, Courville A (2016). Deep Learning. Cambridge, MA, USA: MIT Press.
  • Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew M (2016). Deep learning for visual understanding: a review. Neurocomputing 187: 27-48. doi: 10.1016/j.neucom.2015.09.116
  • Harinie T, Janani CI, Sathya BS, Raju S, Abhaikumar V (2012). Classification of rock textures. In: International Conference on Information Systems Design and Intelligent Applications; Visakhapatnam, India. pp. 887-895.
  • Huang G, Liu Z, Maaten L, Weinberger K (2018). Densely connected convolutional networks. arXiv: 1608.06993v5.
  • Joseph S, Ujir H, Hipiny I (2017). Unsupervised classification of intrusive igneous rock thin section images using edge detection and colour analysis. In: IEEE International Conference on Signal and Image Processing Applications; Kuching, Malaysia. pp. 530-535. doi: 10.1109/ICSIPA.2017.8120669
  • Kingma DP, Ba J (2017). Adam: a method for stochastic optimization. arXiv: 1412.6980.
  • Koeshidayatullah A, Morsilli M, Lehrmann DJ, Al-Ramadan K, Payne JL (2020). Fully automated carbonate petrography using deep convolutional neural networks. Marine and Petroleum Geology 122: 104687. doi: 10.1016/j.marpetgeo.2020.104687
  • LeCun Y, Boser B, Denker J, Henderson D, Howard R et al. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation 1 (4): 541-551. doi: 10.1162/ neco.1989.1.4.541
  • Lepistö L, Kunttu I, Visa A (2005). Rock image classification using color features in Gabor space. Journal of Electronic Imaging 14 (4): 1-3. doi: 10.1117/1.2149872
  • Lima RPD, Bonar A, Coronado DD, Marfurt K, Nicholson C (2019). Deep convolutional neural networks as a geological image classification tool. Sediment Record 17: 4-9. doi: 10.2110/ sedred.2019.2.4
  • Lima RPD, Duarte D, Nicholson C, Slatt R, Marfurt KJ (2020). Petrographic microfacies classification with deep convolutional neural networks. Computers Geosciences 142: 104481. doi: 10.1016/j.cageo.2020.104481
  • Lima RPD, Marfurt K, Duarte D, Bonar A (2019). Progress and challenges in deep learning analysis of geoscience images. Conference Proceedings, 81st EAGE Conference and Exhibition 2019 (1): 1-5. doi: 10.3997/2214-4609.201901607
  • Lima RPD, Suriamin F, Marfurt KJ, Pranter MJ (2019).Convolutional neural networks as aid in core lithofacies classification. Interpretation 7 (3): 27-40. doi: 10.1190/INT-2018-0245.1
  • Liu C, Li M, Zhang Y, Han S, Zhu Y (2019). An enhanced rock mineral recognition method integrating a deep learning model and clustering algorithm. Minerals 9 (9): 516. doi: 10.3390/ min9090516
  • Liu X, Wang H, Jing H, Shao A, Wang L (2020). Research on intelligent identification of rock types based on faster R-CNN method. IEEE Access 8: 21804-21812. doi: 10.1109/access.2020.2968515
  • Marmo R, Amodio S, Tagliaferri R, Ferreri V, Longo G (2005). Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples. Computers & Geosciences 31 (5): 649-659. doi: 10.1016/j. cageo.2004.11.016
  • Marschallinger R (1997). Automatic mineral classification in the macroscopic scale. Computers & Geosciences 23 (1): 119-126. doi: 10.1016/S0098-3004(96)00074-X
  • Młynarczuk M, G´orszczyk A, ´Slipek B (2013).The application of pattern recognition in the automatic classification of microscopic rock images. Computers & Geosciences 60: 126- 133. doi: 10.1016/j.cageo.2013.07.015
  • Patel A, Chatterjee S (2016). Computer vision-based limestone rock-type classification using probabilistic neural network. Geoscience Frontiers 7 (1): 53-60. doi: 10.1016/j.gsf.2014.10.005
  • Ran X, Xue L, Zhang Y, Liu Z, Sang X et al. (2019). Rock classification from field image patches analysed using a deep convolutional neural network. Mathematics 7 (8): 755. doi: 10.3390/ math7080755
  • Salinas R, Raff U, Farfan C (2005). Automated estimation of rock fragment distributions using computer vision and its application in mining. IEEE Proceedings - Vision, Image and Signal Processing 152 (1): 1-8. doi: 10.1049/ip-vis:20050810
  • Singh N, Singh T, Tiwary A, Sarkar K (2010). Textural identification of basaltic rock mass using image processing and neural network. Computational Geosciences 14: 301-310. doi: 10.1007/s10596- 009-9154-x
  • Streckeisen A (1976). To each plutonic rock its proper name. Earth-Science Reviews 12 (1): 1-33. doi: 10.1016/0012- 8252(76)90052-0
  • Tian Y, Guo C, Lv L, Li F, Gao C et al. (2019). Multi-color space rock shin-section image classification with SVM. In: IEEE 8th Joint International Information Technology and Artificial Intelligence Conference; Chongqing, China. pp. 571-574.
  • Zeiler MD (2012). Adadelta: an adaptive learning rate method. arXiv: 1212.5701. Zhang Y, Li M, Han S, Ren Q, Shi J (2019). Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms. Sensors 19 (18): 3914. doi: 10.3390/s19183914
APA Polat Ö, Polat A, Ekici T (2021). Classification of plutonic rock types using thin section images with deep transfer learning. , 551 - 560. 10.3906/yer-2007-19
Chicago Polat Özlem,Polat Ali,Ekici Taner Classification of plutonic rock types using thin section images with deep transfer learning. (2021): 551 - 560. 10.3906/yer-2007-19
MLA Polat Özlem,Polat Ali,Ekici Taner Classification of plutonic rock types using thin section images with deep transfer learning. , 2021, ss.551 - 560. 10.3906/yer-2007-19
AMA Polat Ö,Polat A,Ekici T Classification of plutonic rock types using thin section images with deep transfer learning. . 2021; 551 - 560. 10.3906/yer-2007-19
Vancouver Polat Ö,Polat A,Ekici T Classification of plutonic rock types using thin section images with deep transfer learning. . 2021; 551 - 560. 10.3906/yer-2007-19
IEEE Polat Ö,Polat A,Ekici T "Classification of plutonic rock types using thin section images with deep transfer learning." , ss.551 - 560, 2021. 10.3906/yer-2007-19
ISNAD Polat, Özlem vd. "Classification of plutonic rock types using thin section images with deep transfer learning". (2021), 551-560. https://doi.org/10.3906/yer-2007-19
APA Polat Ö, Polat A, Ekici T (2021). Classification of plutonic rock types using thin section images with deep transfer learning. Turkish Journal of Earth Sciences, 30(4), 551 - 560. 10.3906/yer-2007-19
Chicago Polat Özlem,Polat Ali,Ekici Taner Classification of plutonic rock types using thin section images with deep transfer learning. Turkish Journal of Earth Sciences 30, no.4 (2021): 551 - 560. 10.3906/yer-2007-19
MLA Polat Özlem,Polat Ali,Ekici Taner Classification of plutonic rock types using thin section images with deep transfer learning. Turkish Journal of Earth Sciences, vol.30, no.4, 2021, ss.551 - 560. 10.3906/yer-2007-19
AMA Polat Ö,Polat A,Ekici T Classification of plutonic rock types using thin section images with deep transfer learning. Turkish Journal of Earth Sciences. 2021; 30(4): 551 - 560. 10.3906/yer-2007-19
Vancouver Polat Ö,Polat A,Ekici T Classification of plutonic rock types using thin section images with deep transfer learning. Turkish Journal of Earth Sciences. 2021; 30(4): 551 - 560. 10.3906/yer-2007-19
IEEE Polat Ö,Polat A,Ekici T "Classification of plutonic rock types using thin section images with deep transfer learning." Turkish Journal of Earth Sciences, 30, ss.551 - 560, 2021. 10.3906/yer-2007-19
ISNAD Polat, Özlem vd. "Classification of plutonic rock types using thin section images with deep transfer learning". Turkish Journal of Earth Sciences 30/4 (2021), 551-560. https://doi.org/10.3906/yer-2007-19