Yıl: 2022 Cilt: 6 Sayı: 1 Sayfa Aralığı: 1 - 11 Metin Dili: İngilizce DOI: 10.14744/ejmo.2022.51601 İndeks Tarihi: 18-06-2022

Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches

Öz:
The disease that poses a major threat to human life is cancer. Although different treatment techniques such as chemotherapy, radiotherapy, and chemically driven drugs are used, they do not show expected results and cause many side effects, eventually leading to the death of patients. However, there is one approach that is promising is the consolidation of cancer vaccines and immunotherapy, in which tumor-specific antigens, tumor-associated antigens, antigen-presenting cells, and toll-like receptors play a major role. The approach involves vaccines that are approved by the FDA and has shown good results in the latest research studies.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet 2014;383:549–57.
  • 2. Wild CP. The role of cancer research in noncommunicable disease control. J Natl Cancer Inst 2012;104:1051–8.
  • 3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
  • 4. Carioli G, Bertuccio P, Boffetta P, Levi F, La Vecchia C, Negri E, et al. European cancer mortality predictions for the year 2020 with a focus on prostate cancer. Ann Oncol 2020;31:650–8.
  • 5. Hendrick RE, Baker JA, Helvie MA. Breast cancer deaths averted over 3 decades. Cancer 2019;125:1482–8.
  • 6. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017;66:683–91.
  • 7. Lim RK, Kitts AB, Tremblay A. Lung cancer screening effective for reducing cancer deaths. Am Fam Physician 2020;101:70–1.
  • 8. Zheng R, Qu C, Zhang S, Zeng H, Sun K, Gu X, et al. Liver cancer incidence and mortality in China: Temporal trends and projections to 2030. Chin J Cancer Res 2018;30:571–9.
  • 9. Lortet-Tieulent J, Vaccarella S. International and subnational variation thyroid cancer incidence and mortality over 2008–2012. Revue d'Épidémiologie et de Santé Publique 2018;66:S254.
  • 10. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 2019;10:10–27.
  • 11. Hoelzinger DB, Gendler SJ, Cohen PA, Dominguez AL, Smith SE, Lustgarten J, inventors; Mayo Foundation for Medical Education, assignee. Blocking IL-9 signaling in conjunction with chemotherapy to treat cancer. United States patent US 10,166,292. 2019 Jan 1. Available at: https://patents.google. com/patent/US9833512B2/en. Accessed Feb 4, 2022.
  • 12. Goguet E, Klinman DM, Tross D. Intrapulmonary delivery of TLR agonists associated with systemic chemotherapy to treat metastatic cancer. J Immunol 2018;200.
  • 13. Inoue T, Katoh N, Ito YM, Kimura T, Nagata Y, Kuriyama K, et al. Stereotactic body radiotherapy to treat small lung lesions clinically diagnosed as primary lung cancer by radiological examination: A prospective observational study. Lung Cancer 2018;122:107–12.
  • 14. Greenhalgh TA, Dearman C, Sharma RA. Combination of novel agents with radiotherapy to treat rectal cancer. Clin Oncol (R Coll Radiol) 2016;28:116–39.
  • 15. Chen YW, Su YL, Hu SH, Chen SY. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev 2016;105:190–204.
  • 16. Yamaguchi T, Imai M, Uematsu D. Hybrid approach using laparoscopy and transanal minimally invasive surgery to treat rectal cancer with invasion to the seminal vesicles. Asian J Endosc Surg 2017;10:219–22.
  • 17. Butterfield LH. Cancer vaccines. BMJ 2015;350:h988. 18. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252–64.
  • 19. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014;20:5064–74.
  • 20. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al; International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015;26:259–71.
  • 21. Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011;8:151–60.
  • 22. Pan RY, Chung WH, Chu MT, Chen SJ, Chen HC, Zheng L, et al. Recent development and clinical application of cancer vaccine: targeting neoantigens. J Immunol Res 2018;2018:4325874.
  • 23. Zhao X, Bose A, Komita H, Taylor JL, Chi N, Lowe DB, et al. Vaccines targeting tumor blood vessel antigens promote CD8(+) T cell-dependent tumor eradication or dormancy in HLA-A2 transgenic mice. J Immunol 2012;188:1782–8.
  • 24. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin Cancer Res 2009;15:1443–51.
  • 25. Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, et al. Persistent antigen at vaccination sites induces tumorspecific CD8+ T cell sequestration, dysfunction and deletion. Nat Med 2013;19:465–72.
  • 26. Welters MJ, Kenter GG, Van Steenwijk PJ, Löwik MJ, Berendsvan Der Meer DM, Essahsah F, et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. PNAS 2010;107:11895–9.
  • 27. Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T‐cell activation. Eur J Immunol 2013;43:2554–65.
  • 28. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013;39:38–48.
  • 29. Wierecky J, Müller MR, Wirths S, Halder-Oehler E, Dörfel D, Schmidt SM, et al. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 2006;66:5910–8.
  • 30. Musolino C, Allegra A, Innao V, Allegra AG, Pioggia G, Gangemi S. Inflammatory and anti-inflammatory equilibrium, proliferative and antiproliferative balance: the role of cytokines in multiple myeloma. Mediators Inflamm 2017;2017:1852517.
  • 31. O'Rourke MG, Johnson MK, Lanagan CM, See JL, O'Connor LE, Slater GJ, et al. Dendritic cell immunotherapy for stage IV melanoma. Melanoma Res 2007;17:316–22.
  • 32. Kyte JA, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M, et al. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther 2006;13:905–18.
  • 33. Berntsen A, Trepiakas R, Wenandy L, Geertsen PF, thor Straten P, Andersen MH, et al. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother 2008;31:771–80.
  • 34. Avigan DE, Vasir B, George DJ, Oh WK, Atkins MB, McDermott DF, et al. Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 2007;30:749–61.
  • 35. Babatz J, Röllig C, Löbel B, Folprecht G, Haack M, Günther H, et al. Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer Immunol Immunother 2006;55:268–76.
  • 36. Loveland BE, Zhao A, White S, Gan H, Hamilton K, Xing PX, et al. Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res 2006;12:869–77.
  • 37. Morse MA, Clay TM, Hobeika AC, Osada T, Khan S, Chui S, et al. Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules. Clin Cancer Res 2005;11:3017–24.
  • 38. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003;21:3343–50.
  • 39. Luiten RM, Kueter EW, Mooi W, Gallee MP, Rankin EM, Gerritsen WR, et al. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 2005;23:8978– 91.
  • 40. Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS- 207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res 2012;18:858–68.
  • 41. Barth RJ Jr, Fisher DA, Wallace PK, Channon JY, Noelle RJ, Gui J, et al. A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival. Clin Cancer Res 2010;16:5548–56.
  • 42. Harrop R, Connolly N, Redchenko I, Valle J, Saunders M, Ryan MG, et al. Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (Tro- Vax) induces immune responses which correlate with disease control: a phase I/II trial. Clin Cancer Res 2006;12:3416–24.
  • 43. Kim TS, Chopra A, O-Sullivan IS, Cohen EP. Enhanced immunity to breast cancer in mice immunized with fibroblasts transfected with a complementary DNA expression library from breast cancer cells: Enrichment of the vaccine for immunotherapeutic cells. J Immunother 2006;29:261–73.
  • 44. Schumacher L, Ribas A, Dissette VB, McBride WH, Mukherji B, Economou JS, et al. Human dendritic cell maturation by adenovirus transduction enhances tumor antigen-specific T-cell responses. J Immunother 2004;27:191–200.
  • 45. Kaufman HL, Bines SD. OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 2010;6:941–9.
  • 46. Lindsey KR, Gritz L, Sherry R, Abati A, Fetsch PA, Goldfeder LC, et al. Evaluation of prime/boost regimens using recombinant poxvirus/tyrosinase vaccines for the treatment of patients with metastatic melanoma. Clin Cancer Res 2006;12:2526–37.
  • 47. Amato RJ, Shingler W, Goonewardena M, de Belin J, Naylor S, Jac J, et al. Vaccination of renal cell cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) alone or administered in combination with interferon-alpha (IFN-alpha): a phase 2 trial. J Immunother 2009;32:765–72.
  • 48. Arlen PM, Skarupa L, Pazdur M, Seetharam M, Tsang KY, Grosenbach DW, et al. Clinical safety of a viral vector based prostate cancer vaccine strategy. J Urol 2007;178:1515–20.
  • 49. Marshall JL, Gulley JL, Arlen PM, Beetham PK, Tsang KY, Slack R, et al. Phase I study of sequential vaccinations with fowlpox- CEA(6D)-TRICOM alone and sequentially with vaccinia- CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 2005;23:720–31.
  • 50. Nicholaou T, Ebert LM, Davis ID, McArthur GA, Jackson H, Dimopoulos N, et al. Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin Cancer Res 2009;15:2166–73.
  • 51. Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K, et al. A phase I-II study of alpha-galactosylceramidepulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 2009;182:2492–501.
  • 52. Nemunaitis J, Nemunaitis M, Senzer N, Snitz P, Bedell C, Kumar P, et al. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther 2009;16:620–4.
  • 53. Nemunaitis J, Jahan T, Ross H, Sterman D, Richards D, Fox B, et al. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther 2006;13:555–62.
  • 54. Okaji Y, Tsuno NH, Tanaka M, Yoneyama S, Matsuhashi M, Kitayama J, et al. Pilot study of anti-angiogenic vaccine using fixed whole endothelium in patients with progressive malignancy after failure of conventional therapy. Eur J Cancer 2008;44:383–90.
  • 55. Powell A, Creaney J, Broomfield S, Van Bruggen I, Robinson B. Recombinant GM-CSF plus autologous tumor cells as a vaccine for patients with mesothelioma. Lung Cancer 2006;52:189–97.
  • 56. Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J, et al. Phase I clinical trial of a TGF-beta antisensemodified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 2006;13:1052–60.
  • 57. Victora GD, Socorro-Silva A, Volsi EC, Abdallah K, Lima FD, Smith RB, et al. Immune response to vaccination with DNAHsp65 in a phase I clinical trial with head and neck cancer patients. Cancer Gene Ther 2009;16:598–608.
  • 58. Zerbini A, Pilli M, Laccabue D, Pelosi G, Molinari A, Negri E, et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 2010;138:1931–42.
  • 59. Gravante G, Sconocchia G, Ong SL, Dennison AR, Lloyd DM. Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies. Liver Int 2009;29:18–24.
  • 60. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010;363:411–22.
  • 61. Gilboa E. The promise of cancer vaccines. Nat Rev Cancer 2004;4:401–11.
  • 62. Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kühl-Burmeister R, et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 2003;170:5391–7.
  • 63. Andersen MH, Pedersen LO, Capeller B, Bröcker EB, Becker JC, thor Straten P. Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 2001;61:5964– 8.
  • 64. Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev Immunol 2003;21:807–39.
  • 65. Kwon B, Lee HW, Kwon BS. New insights into the role of 4-1BB in immune responses: beyond CD8+ T cells. Trends Immunol 2002;23:378–80.
  • 66. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A 2002;99:16168–73.
  • 67. Conroy H, Galvin KC, Higgins SC, Mills KH. Gene silencing of TGF-β1 enhances antitumor immunity induced with a dendritic cell vaccine by reducing tumor-associated regulatory T cells. Cancer Immunol Immunother 2012;61:425–31.
  • 68. Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, et al. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol 2013;190:4899– 909.
  • 69. Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H. Current challenges for cancer vaccine adjuvant development. Expert Rev Vaccines 2018;17:207–15.
  • 70. Aldous AR, Dong JZ. Personalized neoantigen vaccines: A new approach to cancer immunotherapy. Bioorg Med Chem 2018;26:2842–9.
  • 71. Ward JP, Gubin MM, Schreiber RD. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 2016;130:25–74.
  • 72. Katsnelson A. Mutations as munitions: Neoantigen vaccines get a closer look as cancer treatment. Nat Med 2016;22:122–4.
  • 73. Schumacher TN, Hacohen N. Neoantigens encoded in the cancer genome. Curr Opin Immunol 2016;41:98–103.
  • 74. Shukla SA, Howitt BE, Wu CJ, Konstantinopoulos PA. Predicted neoantigen load in non-hypermutated endometrial cancers: Correlation with outcome and tumor-specific genomic alterations. Gynecol Oncol Rep 2016;19:42–5.
  • 75. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al; Australian Pancreatic Cancer Genome Initiative. Signatures of mutational processes in human cancer. Nature 2013;500:415–21.
  • 76. Sioud M, Nyakas M, Sæbøe-Larssen S, Mobergslien A, Aamdal S, Kvalheim G. Diversification of antitumour immunity in a patient with metastatic melanoma treated with ipilimumab and an IDO-silenced dendritic cell vaccine. Case Rep Med 2016;2016:9639585.
  • 77. Dos Santos LI, Galvao-Filho B, de Faria PC, Junqueira C, Dutra MS, Teixeira SM, et al. Blockade of CTLA-4 promotes the development of effector CD8+ T lymphocytes and the therapeutic effect of vaccination with an attenuated protozoan expressing NY-ESO-1. Cancer Immunol Immunother 2015;64:311–23.
  • 78. Weber JS, Kudchadkar RR, Gibney GT, De Conti RC, Yu B, Wang W, et al. Phase I/II trial of PD-1 antibody nivolumab with peptide vaccine in patients naive to or that failed ipilimumab. ASCO Meeting Abstracts 2013;31:9011.
  • 79. Ishihara D, Pop L, Takeshima T, Iyengar P, Hannan R. Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment. Cancer Immunol Immunother 2017;66:281–98.
  • 80. Cook AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol 2016;39:23–9.
  • 81. Aurisicchio L, Salvatori E, Lione L, Bandini S, Pallocca M, Maggio R, et al. Poly-specific neoantigen-targeted cancer vaccines delay patient derived tumor growth. J Exp Clin Cancer Res 2019;38:78.
  • 82. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017;547:222–6.
  • 83. Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of mice, dogs, pigs, and men: choosing the appropriate model for immuno-oncology research. ILAR J 2018;59:247–62.
APA GUPTA T, MURTAZA M, GHOSH M, SU W, PANDEY N, GOUTAM U (2022). Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. , 1 - 11. 10.14744/ejmo.2022.51601
Chicago GUPTA Tanvi,MURTAZA Mohd,GHOSH Mrinmoy,SU Wen Pin,PANDEY Narendra Kumar,GOUTAM Umesh Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. (2022): 1 - 11. 10.14744/ejmo.2022.51601
MLA GUPTA Tanvi,MURTAZA Mohd,GHOSH Mrinmoy,SU Wen Pin,PANDEY Narendra Kumar,GOUTAM Umesh Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. , 2022, ss.1 - 11. 10.14744/ejmo.2022.51601
AMA GUPTA T,MURTAZA M,GHOSH M,SU W,PANDEY N,GOUTAM U Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. . 2022; 1 - 11. 10.14744/ejmo.2022.51601
Vancouver GUPTA T,MURTAZA M,GHOSH M,SU W,PANDEY N,GOUTAM U Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. . 2022; 1 - 11. 10.14744/ejmo.2022.51601
IEEE GUPTA T,MURTAZA M,GHOSH M,SU W,PANDEY N,GOUTAM U "Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches." , ss.1 - 11, 2022. 10.14744/ejmo.2022.51601
ISNAD GUPTA, Tanvi vd. "Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches". (2022), 1-11. https://doi.org/10.14744/ejmo.2022.51601
APA GUPTA T, MURTAZA M, GHOSH M, SU W, PANDEY N, GOUTAM U (2022). Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. Eurasian Journal of Medicine and Oncology, 6(1), 1 - 11. 10.14744/ejmo.2022.51601
Chicago GUPTA Tanvi,MURTAZA Mohd,GHOSH Mrinmoy,SU Wen Pin,PANDEY Narendra Kumar,GOUTAM Umesh Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. Eurasian Journal of Medicine and Oncology 6, no.1 (2022): 1 - 11. 10.14744/ejmo.2022.51601
MLA GUPTA Tanvi,MURTAZA Mohd,GHOSH Mrinmoy,SU Wen Pin,PANDEY Narendra Kumar,GOUTAM Umesh Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. Eurasian Journal of Medicine and Oncology, vol.6, no.1, 2022, ss.1 - 11. 10.14744/ejmo.2022.51601
AMA GUPTA T,MURTAZA M,GHOSH M,SU W,PANDEY N,GOUTAM U Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. Eurasian Journal of Medicine and Oncology. 2022; 6(1): 1 - 11. 10.14744/ejmo.2022.51601
Vancouver GUPTA T,MURTAZA M,GHOSH M,SU W,PANDEY N,GOUTAM U Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. Eurasian Journal of Medicine and Oncology. 2022; 6(1): 1 - 11. 10.14744/ejmo.2022.51601
IEEE GUPTA T,MURTAZA M,GHOSH M,SU W,PANDEY N,GOUTAM U "Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches." Eurasian Journal of Medicine and Oncology, 6, ss.1 - 11, 2022. 10.14744/ejmo.2022.51601
ISNAD GUPTA, Tanvi vd. "Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches". Eurasian Journal of Medicine and Oncology 6/1 (2022), 1-11. https://doi.org/10.14744/ejmo.2022.51601