Yıl: 2021 Cilt: 30 Sayı: 2 Sayfa Aralığı: 182 - 203 Metin Dili: İngilizce DOI: 10.3906/yer-2007-14 İndeks Tarihi: 19-06-2022

Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey

Öz:
In this study seasonal changes in the geochemical and stable isotope compositions of Hisaralan thermal waters in Simav Graben, western Turkey, were investigated with regards to a variety of mineral-water interactions and mixing processes. The Hisaralan and Emendere geothermal waters, with temperatures of up to 99 °C, were mostly of Na-HCO3 and Ca-HCO3 types. The δ18O and δ2 H values of the Hisaralan waters ranged from –9.32‰ to –8.73‰ and –65.02‰ to –61.10‰, with maximum seasonal differences of 0.3‰ and 1.8‰. The Emendere waters were represented by a more positive range of δ2 H values (–54.95‰ to –54.61‰), while their δ18O compositions (–9.04 to –8.41‰) were very similar to those of the Hisaralan waters. The stable isotope compositions of the Hisaralan thermal waters were consistent with those of the global meteoric water line, whereas the Emendere waters closely resembled those of the Marmara meteoric water line. The δ13C of the dissolved inorganic carbon varied from –4.33‰ to –2.77‰ for the thermal waters and from –13.84‰ to –12.51‰ for the cold waters. These values indicated a marine carbonate origin for the former and an organic source for the latter. Sulfur isotope systematics of dissolved sulfate in the Hisaralan geothermal waters indicated that the sulfate was most likely derived from the dissolution of marine carbonates and terrestrial evaporites. Chemical geothermometers applied to the Hisaralan thermal waters yielded average reservoir temperatures of 123 to 152 °C, which were rather consistent with those estimated using the silica-enthalpy (146 to 154 °C) and chloride-enthalpy (142 to 178 °C) mixing models. The recharge elevations of the thermal waters that were computed from the δ2 H compositions were between 1060 and 1330 m.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akkuş İ, Akıllı H, Ceyhan S, Özçelik N (2005). Turkish Geothermal Resource Inventory. General Directorate of Mineral Research and Exploration, publication no. 201. Ankara, Turkey: General Directorate of Mineral Research and Exploration (in Turkish).
  • Aksoy N, Demirkıran Z, Şimşek C (2009). Assessment of geochemical characteristics of the Sındırgı–Hisaralan (Balıkesir) geothermal field. In: IX. National Installation Engineering Congress (TESKON), Geothermal Energy Seminar; İzmir, Turkey. pp. 61-72 (in Turkish with English abstract).
  • Andrews JN (1985). The isotopic composition of radiogenic He and its use to study groundwater movement in confined aquifer. Chemical Geology 49: 339-351. doi: 10.1016/0009- 2541(85)90166-4
  • Atabey E (2000). Earthquake. General Directorate of Mineral Research and Exploration, Education series No. 34. Ankara, Turkey: General Directorate of Mineral Research and Exploration (in Turkish).
  • Baba A, Sözbilir H (2012). Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in western Turkey. Chemical Geology 334: 364-377. doi: 10.1016/j.chemgeo.2012.06.006
  • BilimF,AkayT,AydemirA,Koşaroğlu S (2016).Curie point depth, heatflow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60: 44-57. doi: 10.1016/j.geothermics.2015.12.002
  • Brinkmann R (1971). Das kristalline Grundgebirge von Anatolien. Geologische Rundschau 60: 886-899 (in German with an abstract in English). doi: 10.1007/BF02046526
  • Bozkurt E (2003). Origin of NE-trending basins in western Turkey. Geodinamica Acta 16: 61-81. doi: 10.1016/S0985- 3111(03)00002-0
  • Bundschuh J, Maity JP, Nath B, Baba A, Gündüz O et al. (2013). Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: potential role in contamination of freshwater resources. Journal of Hazardous Materials 262: 951-959. doi: 10.1016/j.jhazmat.2013.01.039
  • Burçak M, Dünya H, Hacısalihoğlu Ö (2013). New approaches on the investigation of covered geothermal fields: exploration of Kütahya-Şaphane-Karaca derbent buried geothermal fields and their developments. Bulletin of Mineral Research and Exploration 147: 127-151.
  • Cervi F, Borgatti L, Dreossi G, Marcato G, Michelini M et al. (2017). Isotopic features of precipitation and groundwater from the Eastern Alps of Italy: results from the Mt. Tinisa hydrogeological system. Environmental Earth Sciences 76: 410. doi: 10.1007/s12665-017-6748-9
  • Clark I, Fritz P (1997). Environmental Isotopes in Hydrogeology. New York, NY, USA: Lewis Publishers.
  • Chiodini G, Frondini F, Cardellini C, Parello F, Peruzzi L (2000). Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. Journal of Geophysical Research 105 (B4): 8423-8434. doi: 10.1029/1999JB900355
  • Craig H (1961). Isotopic variation in meteoric waters. Science 133: 1702-1703. doi: 10.1126/science.133.3465.1702
  • Coşanay P, Varol E, Çevik N, Kızılkanat C, Mutlu H et al. (2017). Geochemical, microthermometric and isotopic constraints on the origin of fluorite deposits in central Anatolia, Turkey. Turkish Journal of Earth Sciences 26 (3): 206-226. doi: 10.3906/ yer-1701-1713.
  • Çemen İ, Catlos EJ, Göğüş O, Özerdem C (2006). Postcollisional extensional tectonics and exhumation of the Menderes Massif in Western Anatolia extended terrane, Turkey. In: Dilek Y, Pavlides S (editors). Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America, Special Papers 409: 353-379. doi: 10.1130/2006.2409(18)
  • Dansgaard W (1964). Stable isotopes in precipitation. Tellus 16 (4): 436-468. doi: 10.1111/j.2153-3490.1964.tb00181.x
  • Dotsika E, Diamantopoulos G, Lykoudis S, Poutoukis D, Kranioti E (2018). Isotopic composition of spring water in Greece: spring waters isoscapes. Geosciences 8: 238. doi: 10.3390/ geosciences8070238
  • Ece Ö, Ekinci B, Schroeder PA, Crowe D, Esenli F (2013). Origin of the Düvertepe kaolin–alunite deposits in Simav Graben, Turkey: timing and styles of hydrothermal mineralization. Journal of Volcanology and Geothermal Researches 225: 57- 78. doi: 10.1016/j.jvolgeores.2013.01.012
  • Ellis AJ, Mahon WAJ (1977). Chemistry and geothermal systems. New York, NY, USA: Academic Press.
  • Emre Ö, Doğan A, Özalp S (2011). 1:250.000 scale active fault map series of Turkey, Balıkesir (NJ 35-3) Quadrangle. Serial number: 4, General Directorate of Mineral Research and Exploration. Ankara, Turkey; General Directorate of Mineral Research and Exploration.
  • Erdoğan B, Güngör T (1992). Stratigraphy and tectonic evolution of the northern margin of the Menderes Massif. Turkish Association of Petroleum Geologists Bulletin 4: 9-34.
  • Erkül F, Helvacı C, Sözbilir H (2005). Stratigraphy and geochronology of the Early Miocene volcanic units in the Bigadiç borate basin, Western Turkey. Turkish Journal of Earth Sciences 14 (3): 227- 253.
  • Erkül F, Helvacı C, Sözbilir H (2006). Olivine basalt and trachyandesite peperites formed at the subsurface/surface interface of a semiarid lake: an example from the Early Miocene Bigadic¸ basin, western Turkey. Journal of Volcanology and Geothermal Researches 149: 240-262. doi: 10.1016/j.jvolgeores.2005.07.016
  • Ersoy EY, Çemen İ, Helvacı C, Billor Z (2014). Tectono-stratigraphy of the Neogene basins in Western Turkey: implications for tectonic evolution of the Aegean Extended Region. Tectonophysics 635: 33-58. doi: 10.1016/j.tecto.2014.09.002
  • Faure G (1986). Principles of Isotope Geology. 2nd ed. New York, USA: John Wiley and Sons Inc.
  • Fournier RO (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics 5: 41-50. doi: 10.1016/0375-6505(77)90007-4
  • Friedman I, O’Neil JR (1977). Compilation of stable isotope fractionation factors of geochemical interest. Report, USGS Numbered Series. Washington, USA: U.S. Government Printing Office.
  • Gat JR, Carmi I (1970). Evolution of the isotopic composition of the atmospheric water in the Mediterranean Sea area. Journal of Geophysical Research 75: 3039-3048.
  • Gat JR, Carmi I (1987). Effect of climate changes on the precipitation patterns and isotopic composition of water in a climate transition zone: case of the Eastern Mediterranean Sea area. In Solomon SI, Beran M, Hogg W (editors). The Influence of Climate Change and Climatic Variability on the Hydrologie Regime and Water Resources. Oxfordshire, UK: IAHS Publication, pp. 501-513.
  • Gemici Ü, Tarcan G (2002). Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey. Journal of Volcanology and Geothermal Researches 116: 215-233.
  • Gemici Ü, Tarcan G (2007). Hydrogeochemistry of the Hisarköy geothermal area (Balıkesir) Western Turkey. In: 12th International Symposium on Water-Rock Interaction; Kunming, China. pp. 203-206.
  • Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983). Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India. Geothermics 12: 192- 222.
  • Giggenbach WF (1988). Geothermal solute equilibria: derivation of Na-K-Mg-Ca geoindicators. Geochimica Cosmochimica Acta 52: 2749-2765. doi: 10.1016/0016-7037(88)90143-3
  • Giggenbach WF (1991). Chemical techniques in geothermal exploration. In: D’amore F (coordinator). Application of Geochemistry in Geothermal Reservoir Development. New York, NY, USA: UNITAR, pp. 119-144.
  • Henley RW, Truesdell AH, Barton PB, Whitney JA (1984). Fluid– Mineral Equilibria in Hydrothermal Systems. Reviews in Economic Geology, Vol. 1. Littleton, CO, USA: Society of Economic Geologist, Inc.
  • İlkışık OM (1995). Regional heat flow in western Anatolia using silica temperature estimates from thermal springs. Tectonophysics 244: 175-184. doi: 10.1016/0040-1951(94)00226-Y
  • Izbicki JA, Christensen AH, Newhouse MW, Aiken GR (2005). Inorganic, isotopic, and organic composition of highchloride water from wells in a coastal southern California aquifer. Applied Geochemistry 20: 1496-1517. doi: 10.1016/j. apgeochem.2005.04.010
  • James ER, Manga M, Rose TP, Hudson GB (2000). The use of temperature and the isotopes of O, H, C, and noble gases to determine the pattern and spatial extent of groundwater flow. Journal of Hydrology 237: 100-112. doi: 10.1016/S0022- 1694(00)00303-6
  • Jolivet L, Faccenna C, Huet B, Labrousse L, Pourhiet L et al. (2013). Aegean tectonics: strain localisation, slabtearing and trench retreat. Tectonophysics 597-598: 1-33. doi: 10.1016/j. tecto.2012.06.011
  • Kampschulte A, Strauss H (2004). The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology 204: 255- 286. doi: 10.1016/j.chemgeo.2003.11.013
  • Karabacak V, Uysal IT, Ünal-İmer E, Mutlu H, Zhao J (2017). U-Th evidence from carbonate veins for episodic crustal deformation of Central Anatolian Volcanic Province. Quaternary Science Reviews 177: 158-172. doi: 10.1016/j.quascirev.2017.10.022
  • Karakuş H (2015). Helium and carbon isotope composition of gas discharges in the Simav Geothermal Field, Turkey: implications for the heat source. Geothermics 57: 213-223. doi: 10.1016/j. geothermics.2015.07.005
  • Kocabaş C, Tokçaer M, Çolak M (2016). Clay mineralogy and geochemistry of fossil and active hydrothermal alteration in the Hisaralan Geothermal Field (Sındırgı‐Balıkesir), western Turkey. Afyon Kocatepe University Journal of Science and Engineering 16: 132-154. doi: 10.5578/fmbd.10852
  • Konak N (2002). 1/500.000 scaled Turkish geology map, İzmir quadrangle.. Ankara, Turkey: General Directorate of Mineral Research and Exploration (in Turkish).
  • Kralik M (2015). How to estimate mean residence times of groundwater. Procedia Earth and Planetary Science 13: 301- 306. doi: 10.1016/j.proeps.2015.07.070
  • Krouse HR, Mayer B (2000). Sulphur and oxygen isotopes in sulphate. In: Cook P, Herczeg AL (editors). Environmental tracers in subsurface hydrology. norwell, MA, USA: Kluwer Academic Publishers, pp. 195-231. doi: 10.1007/978-1-4615-4557-6_7
  • Lips ALW, Cassard D, Sözbilir H, Yılmaz H, Wijbrans JR (2001). Multistage exhumation of the Menderes Massif, Western Anatolia (Turkey). International Journal of Earth Sciences 89: 781-792. doi: 10.1007/s005310000101
  • Liu L, Suto Y, Bignall GN, Hashida T (2003). CO2 injection to granite and sandstone in experimental rock/hot water systems. Energy Conversion and Management 44: 1399-1410. doi: 10.1016/ S0196-8904(02)00160-7
  • Lloyd RM (1968). Oxygen isotope behavior in the sulfate–water system. Journal of Geophysical Research 73: 6099-6110. doi: 10.1029/JB073i018p06099
  • Mutlu H (2007). Constraints on the origin of the Balıkesir thermal waters (Turkey) from stable isotope (δ18O, δD, δ13C, δ34S) and major-trace element compositions. Turkish Journal of Earth Sciences 16: 13-32.
  • Mutlu H, Güleç N (1998). Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia, Turkey. Journal of Volcanology and Geothermal Researches 85: 495- 515. doi: 10.1016/S0377-0273(98)00068-7
  • Mutlu H, Sarıiz K, Kadir S (2005). Geochemistry and origin of the Şaphane alunite deposit, Western Anatolia, Turkey. Ore Geology Reviews 26: 39-50. doi: 10.1016/j.oregeorev.2004.12.003
  • Mutlu H, Güleç N, Hilton DR (2008). Helium-carbon relationships in geothermal fluids of western Anatolia, Turkey. Chemical Geology 247: 305-321. doi: 10.1016/j.chemgeo.2007.10.021
  • Mutlu H, Güleç N, Hilton DR, Aydın H, Halldórsson SA (2012). Spatial variations in gas and stable isotope compositions of thermal fluids around Lake Van: implications for crust-mantle dynamics in eastern Turkey. Chemical Geology 300-301: 165- 176. doi: 10.1016/j.chemgeo.2012.01.026
  • Nuti S (1991). Isotope techniques in geothermal studies. In: D’amore F (coordinator). Application of geochemistry in geothermal reservoir development. New York, NY, USA: UNITAR, pp. 215-251.
  • Okay AI, Altıner D (2007). A condensed Mesozoic section in the Bornova Flysch zone: a fragment of the Anatolide–Tauride carbonate platform. Turkish Journal of Earth Sciences 16: 257- 279.
  • Okay Aİ, İşintek İ, Altıner D, Özkan-Altıner S, Okay N (2012). An olistostrome-mélange belt formed along a suture: Bornova Flysch zone, western Turkey. Tectonophysics 568-569: 282- 295. doi: 10.1016/j.tecto.2012.01.007
  • Oygür V (1997). Anatomy of an epithermal mineralization: Mumcu (Balıkesir–Sındırgı), inner-western Anatolia, Turkey. Bulletin of Mineral Research and Exploration 119: 29-39.
  • Özkul M, Gökgöz A, Kele S, Baykara MO, Shen C-C et al. (2014). Sedimentological and geochemical characteristics of a fluvial travertine: a case from the eastern Mediterranean region. Sedimentology 61: 291-318. doi: 10.1111/sed.12095
  • Parkhurst DL, Appelo CAJ (1999). User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, onedimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report 99-4259.
  • Pfahl S, Sodemann H (2014). What controls deuterium excess in global precipitation? Climate of the Past 10: 771-781. doi: 10.5194/cp-10-771-2014
  • Sappa G, Vitale S, Ferranti F (2018). Identifying Karst aquifer recharge areas using environmental isotopes: a case study in central Italy. Geosciences 8: 351. doi: 10.3390/geosciences8090351
  • Seyitoğlu G, Scott BC (1994). Late Cenozoic basin development in West Turkey: Gördes basin: tectonics and sedimentation. Geological Magazine 131: 631-637. doi: 10.1017/ S0016756800012425
  • Seyitoğlu G (1997a). The Simav Graben: an example of young E-W trending structures in the Late Cenozoic extensional system of western Turkey. Turkish Journal of Earth Sciences 6: 135-141.
  • Seyitoğlu G (1997b). Late Cenozoic tectono-sedimentary development of the Selendi and Uşak-Güre basins: a contribution to the discussion on the development of eastwest and north-trending basins in western Turkey. Geological Magazine 134: 163-175. doi: 10.1017/S0016756897006705
  • Seyitoğlu G, Işık V, Çemen İ (2004). Complete Tertiary exhumation history of Menderes massif, western Turkey: a working hypothesis Turkey. Terra Nova 16: 358-364. doi: 10.1111/j.1365- 3121.2004.00574.x
  • Schürch M, Kozel R, Schotterer U, Tripet J-P (2003). Observation of isotopes in the water cycle—the Swiss National Network (NISOT). Environmental Geology 45: 1-11.
  • Tarcan G (2005). Mineral saturation and scaling tendencies of waters discharged from wells (> 150 degrees C) in geothermal areas of Turkey. Journal of Volcanology and Geothermal Researches 142: 263-283. doi: 10.1016/j.jvolgeores.2004.11.007
  • Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N (2008). Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. Journal of Geophysical Research 113. doi: 10.1029/2008JD010209
  • Uysal IT, Feng Y, Zhao J-X, Altunel E, Weatherley D et al. (2007). U-series dating and geochemical tracing of late quaternary travertine in coseismic fissures. Earth and Planetary Science Letters 257: 450-462. doi: 10.1016/j.epsl.2007.03.004
  • Van Hinsbergen DJJ (2010). A key extensional metamorphic complex reviewed and restored: the Menderes Massif of western Turkey. Earth-Science Reviews 102: 60-76. doi: 10.1016/j. earscirev.2010.05.005
  • Yalçın T (2007). Geochemical characterization of the Biga Peninsula thermal waters (NW Turkey). Aquatic Geochemistry 13: 75- 93. doi: 10.1007/s10498-006-9008-2
  • Yılmaz Y, Genç ŞC, Gürer F, Bozcu M, Yılmaz K et al. (2000). When did the western Anatolian grabens begin to develop? In: Bozkurt E, Winchester JA, Piper JAD (editors). Tectonics and magmatism in Turkey and the surrounding area. Geological Society, London, Special Publications 173 (1): 353-384. doi: 10.1144/GSL.SP.2000.173.01.17
  • Yılmaz H, Sönmez NF, Akay E, Şener AK, Tufan ST (2013). Low‐ sulfidation epithermal Au‐Ag mineralization in the Sındırgı District, Balıkesir Province, Turkey. Turkish Journal of Earth Sciences 22: 485-522. doi: 10.3906/yer-1204-10
APA Gokgoz A, Mutlu H, Özkul M, Yüksel A (2021). Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. , 182 - 203. 10.3906/yer-2007-14
Chicago Gokgoz Ali,Mutlu Halim,Özkul Mehmet,Yüksel Ali Kamil Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. (2021): 182 - 203. 10.3906/yer-2007-14
MLA Gokgoz Ali,Mutlu Halim,Özkul Mehmet,Yüksel Ali Kamil Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. , 2021, ss.182 - 203. 10.3906/yer-2007-14
AMA Gokgoz A,Mutlu H,Özkul M,Yüksel A Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. . 2021; 182 - 203. 10.3906/yer-2007-14
Vancouver Gokgoz A,Mutlu H,Özkul M,Yüksel A Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. . 2021; 182 - 203. 10.3906/yer-2007-14
IEEE Gokgoz A,Mutlu H,Özkul M,Yüksel A "Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey." , ss.182 - 203, 2021. 10.3906/yer-2007-14
ISNAD Gokgoz, Ali vd. "Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey". (2021), 182-203. https://doi.org/10.3906/yer-2007-14
APA Gokgoz A, Mutlu H, Özkul M, Yüksel A (2021). Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. Turkish Journal of Earth Sciences, 30(2), 182 - 203. 10.3906/yer-2007-14
Chicago Gokgoz Ali,Mutlu Halim,Özkul Mehmet,Yüksel Ali Kamil Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. Turkish Journal of Earth Sciences 30, no.2 (2021): 182 - 203. 10.3906/yer-2007-14
MLA Gokgoz Ali,Mutlu Halim,Özkul Mehmet,Yüksel Ali Kamil Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. Turkish Journal of Earth Sciences, vol.30, no.2, 2021, ss.182 - 203. 10.3906/yer-2007-14
AMA Gokgoz A,Mutlu H,Özkul M,Yüksel A Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. Turkish Journal of Earth Sciences. 2021; 30(2): 182 - 203. 10.3906/yer-2007-14
Vancouver Gokgoz A,Mutlu H,Özkul M,Yüksel A Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey. Turkish Journal of Earth Sciences. 2021; 30(2): 182 - 203. 10.3906/yer-2007-14
IEEE Gokgoz A,Mutlu H,Özkul M,Yüksel A "Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey." Turkish Journal of Earth Sciences, 30, ss.182 - 203, 2021. 10.3906/yer-2007-14
ISNAD Gokgoz, Ali vd. "Multiple fluid-mineral equilibria approach to constrain the evolution of thermal waters in the Hisaralan geothermal field, Simav Graben, western Turkey". Turkish Journal of Earth Sciences 30/2 (2021), 182-203. https://doi.org/10.3906/yer-2007-14