Yıl: 2022 Cilt: 31 Sayı: 2 Sayfa Aralığı: 235 - 246 Metin Dili: İngilizce DOI: 10.3906/yer-2108-1 İndeks Tarihi: 21-06-2022

Skill assessment of a high resolution (1/72 degree) Black Sea ocean model

Öz:
The skill of a high-resolution Black Sea circulation model (ROMS) is assessed using the available satellite and field data for Sea Surface Height Anomaly (SSHA), Sea Surface Temperature, and CTD profiles. The model is configured to simulate the 9-year period between 2012 and 2021. The model’s skill is assessed using standard analytical methods for error calculation such as Root Mean Square Error (RMSE) and correlation. Additionally, the model results are assessed using several more recent methods such as the relative operating characteristic (ROC). The results show that the model is capable of simulating daily mean SSHA with an RMSE value of 1.2 cm. When the mean monthly SSHA values are considered, the RMSE drops down to 0.7 cm. The biggest source of the error for SSHA is found to be related to the freshwater balance, as the Black Sea is a freshwater-dominated marine environment. The results for SST show that the model is able to capture both the daily and seasonal variation with high correlation values. The correlation coefficient for basin averaged SST over the entire simulation period compared to the satellite-based OISST data is calculated as 0.98, and the RMSE value is 1.6 °C. In addition to the surface comparisons obtained from SSHA and SST, the model results are compared to 2300 Argo Float CTD profiles. The RMSE is 1.1 °C for the temperature profiles and 0.7 PSU for the salinity over the entire water column. The methods used to assess the skill of the model show that the model is quite capable of simulation of oceanic conditions within the Black Sea. As one of the aims of this model’s development is to simulate mesoscale-to-sub-mesoscale eddies, results on the model’s capabilities show that it can simulate eddies successfully from 5 – 50 km eddies in the Black Sea.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • ltiok H, Kayişoğlu M (2015). Seasonal and interannual variability of water exchange in the Strait of Istanbul. Mediterranean Marine Science 16 (3): 644-655. doi: 10.12681/mms.1225
  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B et al. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy 32 (4): 355-371. doi: 10.1080/01490410903297766
  • Capet A, Barth A, Beckers JM, Marilaure G (2012). Interannual variability of Black Sea’s hydrodynamics and connection to atmospheric patterns. Deep-Sea Research Part II: Topical Studies in Oceanography 77: 128-142. doi: 10.1016/j.dsr2.2012.04.010
  • Capet A, Stanev EV, Beckers JM, Murray JW, Gregoire M (2016). Decline of the Black Sea oxygen inventory. Biogeosciences 13 (4): 1287–1297. doi: 10.5194/bg-13-1287-2016
  • Chelton DB, Schlax MG, Samelson RM (2011). Global observations of nonlinear mesoscale eddies. Progress in Oceanography 91 (2): 167–216. doi: 10.1016/j.pocean.2011.01.002
  • Enriquez CE, Shapiro GI, Souza AJ, Zatsepin AG (2005). Hydrodynamic modelling of mesoscale eddies in the Black Sea. Ocean Dynamics 55 (5–6): 476–489. doi: 10.1007/s10236-005-0031-4
  • Fichaut M, Garcia MJ, Giorgetti A, Iona A, Kuznetsov A et al. (2003). MEDAR/MEDATLAS 2002: A Mediterranean and Black Sea database for operational oceanography. Elsevier Oceanography Series 69: 645-648. doi: 10.1016/S0422-9894(03)80107-1
  • Grayek S, Stanev EV, Kandilarov R (2010). On the response of Black Sea level to external forcing: Altimeter data and numerical modelling. Ocean Dynamics 60 (1): 123-140. doi: 10.1007/s10236-009-0249- 7
  • Gunduz M, Özsoy E, Hordoir R (2020). A model of Black Sea circulation with strait exchange (2008-2018). Geoscientific Model Development 13 (1): 121–138. doi: 10.5194/gmd-13-121-2020
  • Jarosz E, Teague WJ, Book JW, Besiktepe S (2011). Observed volume fluxes in the Bosphorus Strait. Geophysical Research Letters 38 (21): 1–6. doi: 10.1029/2011GL049557
  • Kara AB, Wallcraft AJ, Hurlburt HE (2005). Sea surface temperature sensitivity to water turbidity from simulations of the turbid Black Sea using HYCOM. Journal of Physical Oceanography 35 (1): 33–54. doi: 10.1175/JPO-2656.1
  • Kara AB, Wallcraft AJ, Hurlburt HE, Stanev EV (2008). Air–sea fluxes and river discharges in the Black Sea with a focus on the Danube and Bosphorus. Journal of Marine Systems 74 (1-2): 74-95. doi: 10.1016/j.jmarsys.2007.11.010
  • Korotenko KA, Bowman MJ, Dietrich DE (2010). High-resolution numerical model for predicting the transport and dispersal of oil spilled in the Black Sea. Terrestrial, Atmospheric and Oceanic Sciences 21 (1): 123–136. doi: 10.3319/ TAO.2009.04.24.01(IWNOP)
  • Korotenko KA (2017). Modeling processes of the protrusion of near-coastal anticyclonic eddies through the Rim Current in the Black Sea. Oceanology 57 (3): 394–401. doi: 10.1134/ s0001437017020114
  • Korotenko KA (2018). Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: an assessment of the environmental impacts. PeerJ 6 (e5448): 1-32. doi: 10.7717/peerj.5448
  • Kurkin A, Kurkina O, Rybin A, Talipova T (2020). Comparative analysis of the first baroclinic Rossby radius in the Baltic, Black, Okhotsk, and Mediterranean seas. Russian Journal of Earth Sciences 20 (4): ES4008. doi: 10.2205/2020ES000737
  • Martinez DO, Chen S, Doolen GD, Kraichnan RH, Wang LP et al. (1997). Energy spectrum in the dissipation range of fluid turbulence. Journal of Plasma Physics 57 (1):195-201. doi: 10.1017/S0022377896005338
  • Oguz T, Latun VS, Latif MA, Vladimirov VV, Sur HI et al. (1993). Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 40 (8): 1597-1612. doi: 10.1016/0967-0637(93)90018-X
  • Oguz T, Aubrey DG, Latun VS, Demirov E, Koveshnikov L et al. (1994). Mesoscale circulation and thermohaline structure of the Black Sea observed during HydroBlack ’91. Deep-Sea Research Part I: Oceanographic Research Papers 41 (4): 603–628. doi: 10.1016/0967-0637(94)90045-0
  • Oguz T, Malanotte-Rizzoli P, Aubrey D (1995). Wind and thermohaline circulation of the Black Sea driven by yearly mean climatological forcing. Journal of Geophysical Research 100 (C4): 6845– 6863. doi: 10.1029/95JC00022
  • Oguz T, Besiktepe S (1999). Observations on the Rim Current structure, CIW formation and transport in the western Black Sea. Deep-Sea Research Part I: Oceanographic Research Papers 46 (10): 1733– 1753. doi: 10.1016/S0967-0637(99)00028-X
  • Pontius RG, Schneider LC (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment 85 (1–3): 239– 248. doi: 10.1016/S0167-8809(01)00187-6
  • Sheng YP, Kim T (2009). Skill assessment of an integrated modeling system for shallow coastal and estuarine ecosystems. Journal of Marine Systems 76 (1–2): 212–243. doi: 10.1016/j. jmarsys.2008.05.011
  • Staneva JV, Dietrich DE, Stanev EV, Bowman MJ (2001). Rim Current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model. Journal of Marine Systems 31 (1–3): 137–157. doi: 10.1016/S0924-7963(01)00050-1
  • Stanev EV, Beckers JM (2002). Barotropic and baroclinic oscillations in strongly stratified ocean basins. Journal of Marine Systems 19 (1–3): 65–112. doi: 10.1016/s0924-7963(98)00024-4
  • Tutak, B (2020). Identification of the Temporal and Spatial Variability of Batumi Eddy by a Numerical Ocean Model. Afyon Kocatepe University Journal of Sciences and Engineering 20 (1): 165–173. doi: 10.35414/akufemubid.627279 (in Turkish with English abstract)
  • Vorosmarty CJ, Fekete BM, Tucker BA (1998). Global River Discharge, 1807-1991, V[ersion]. 1.1 (RivDIS). Oak Ridge National Laboratory Distributed Active Archive Center, Tennessee, USA. doi: 10.3334/ORNLDAAC/199.55
APA Tutak B (2022). Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. , 235 - 246. 10.3906/yer-2108-1
Chicago Tutak Bilge Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. (2022): 235 - 246. 10.3906/yer-2108-1
MLA Tutak Bilge Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. , 2022, ss.235 - 246. 10.3906/yer-2108-1
AMA Tutak B Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. . 2022; 235 - 246. 10.3906/yer-2108-1
Vancouver Tutak B Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. . 2022; 235 - 246. 10.3906/yer-2108-1
IEEE Tutak B "Skill assessment of a high resolution (1/72 degree) Black Sea ocean model." , ss.235 - 246, 2022. 10.3906/yer-2108-1
ISNAD Tutak, Bilge. "Skill assessment of a high resolution (1/72 degree) Black Sea ocean model". (2022), 235-246. https://doi.org/10.3906/yer-2108-1
APA Tutak B (2022). Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. Turkish Journal of Earth Sciences, 31(2), 235 - 246. 10.3906/yer-2108-1
Chicago Tutak Bilge Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. Turkish Journal of Earth Sciences 31, no.2 (2022): 235 - 246. 10.3906/yer-2108-1
MLA Tutak Bilge Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. Turkish Journal of Earth Sciences, vol.31, no.2, 2022, ss.235 - 246. 10.3906/yer-2108-1
AMA Tutak B Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. Turkish Journal of Earth Sciences. 2022; 31(2): 235 - 246. 10.3906/yer-2108-1
Vancouver Tutak B Skill assessment of a high resolution (1/72 degree) Black Sea ocean model. Turkish Journal of Earth Sciences. 2022; 31(2): 235 - 246. 10.3906/yer-2108-1
IEEE Tutak B "Skill assessment of a high resolution (1/72 degree) Black Sea ocean model." Turkish Journal of Earth Sciences, 31, ss.235 - 246, 2022. 10.3906/yer-2108-1
ISNAD Tutak, Bilge. "Skill assessment of a high resolution (1/72 degree) Black Sea ocean model". Turkish Journal of Earth Sciences 31/2 (2022), 235-246. https://doi.org/10.3906/yer-2108-1