Yıl: 2022 Cilt: 31 Sayı: 3 Sayfa Aralığı: 260 - 283 Metin Dili: İngilizce DOI: 10.3906/yer-2111-18 İndeks Tarihi: 21-06-2022

Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey

Öz:
In this study, we investigate chemical and isotopic characteristics of low-temperature geothermal waters issuing from carbonate reservoirs in the Çürüksu Graben within the eastern termination of the Büyük Menderes Graben in western Turkey. Temperatures and pH values of geothermal waters vary from 20.1 to 24.6 ºC and 6.62 to 7.11 and those of cold waters are 17.1 to 19.9 ºC and 6.85 to 7.72, respectively. Geothermal waters are of $Ca-HCO_3$ and $Ca-SO_4$ types whereas cold waters are characterized by these two types and $Mg-HCO_3$as well. $δ^{18}O$ and δD values of samples vary from –9.27‰ to –7.69‰ (VSMOW) and –58.06‰ to –52.2‰ and indicate a meteoric origin with local recharge. Tritium contents are from 0.12 to 2.17 TU for thermal waters and 0.28 to 4.85 TU for the cold waters implying relatively longer residence time for the hot waters. Thermal water samples mostly have positive $^{δ13}C$ values (varying from –0.32‰ to +1.99‰) and carbon in these waters is likely derived from marine limestone or metamorphic $CO_{2}.$ $δ^{34}S$ and $δ^{18}O$ values of dissolved sulfate in the waters indicate that sulfur originates from dissolution of marine evaporite deposits (e.g., gypsum). Çürüksu waters are generally oversaturated with respect to calcite, dolomite and quartz but undersaturated with respect to gypsum. Common ion effect exerted a strong control for the formation of travertine deposits in the area. Chemical and isotopic evaluations indicated that the diversity in the water chemistry of samples is attributed to a combination of processes including water-rock interaction, ion exchange and mixing of various types of waters. Çürüksu thermal waters are immature and not in chemical equilibrium with the reservoir rock. Among the various geothermometers applied to Çürüksu thermal waters, temperatures computed by chalcedony, quartz and CaMg geothermometers are 21–52 ºC, 49–83 ºC and 73–96 ºC, respectively. $HCO_3-SO_4-F$ and anhydrite-chalcedony (quartz) diagrams estimated a temperature range of 63–86 ºC and $δ^{18}O$$(SO_4 -H_2O)$ isotope geothermometer yielded 67–78 ºC.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akkuş İ, Akıllı H, Ceyhan S, Dilemre A, Tekin Z (2005). Türkiye jeotermal kaynaklar envanteri. Maden Tetkik ve Arama Genel Müdürlüğü Envanter Serisi: 201 (in Turkish).
  • Alçiçek H, Bülbül A, Alçiçek MC (2016). Hydrogeochemistry of the thermal waters from the Yenice Geothermal Field (Denizli Basin, Southwestern Anatolia, Turkey). Journal of Volcanology and Geothermal Researches 309: 118–138. doi: 10.1016/j. jvolgeores.2015.10.025
  • Alçiçek H, Bülbül A, Brogi A, Liotta D, Ruggieri G et al. (2018). Origin, evolution and geothermometry of the thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey). Journal of Volcanology and Geothermal Researches 349: 1–30. doi: 10.1016/j.jvolgeores.2017.07.021
  • Alçiçek H, Bülbül A, Yavuzer İ, Alçiçek MC (2019a). Hydrogeochemical and isotopic assessment and geothermometry applications in relation to the Karahayıt Geothermal Field (Denizli Basin, SW Anatolia, Turkey). Hydrogeology Journal. doi: 10.1007/s10040-019-01927-y
  • Alçiçek H, Bülbül A, Yavuzer İ, Alçiçek MC (2019b). Origin and evolution of the thermal waters from the Pamukkale Geothermal Field (Denizli Basin, SW Anatolia, Turkey): Insights from hydrogeochemistry and geothermometry. Journal of Volcanology and Geothermal Research 372: 48–70. doi: 10.1016/j.jvolgeores.2018.09.011
  • Arnorsson S (1975). Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. American Journal of Science 275: 763–784. doi: 10.2475/ajs.275.7.763
  • Arnorsson S, Gunnlaugsson E, Svavarsson H (1983). The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochimica et Cosmochimica
  • Acta 47 (3): 567–577. doi: 10.1016/0016-7037(83)90278-8 Avşar Ö, Altuntaş G (2017). Hydrogeochemical evaluation of Umut geothermal field (SW Turkey). Environmental Earth Sciences 76: 582. doi: 10.1007/s12665-017-6929-6
  • Baba A, Sözbilir H (2012). Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in western Turkey. Chemical Geology 334: 364–377. doi: 10.1016/j. chemgeo.2012.06.006
  • Bilim F, Akay T, Aydemir A, Koşaroğlu S (2016). Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60: 44–57. doi: 10.1016/j. geothermics.2015.12.002
  • Blasco M, Auqué LF, Gimeno MJ, Acero P, Asta MP (2017). Geochemistry, geothermometry and influence of the concentration of mobile elements in the chemical characters of carbonate-evaporitic thermal systems. The case of the Tiermas geothermal system (Spain). Chemical Geology 466: 696–709. doi: 10.1016/j.chemgeo.2017.07.013
  • Blasco M, Gimeno MJ, Auqué LF (2018). Low temperature geothermal systems in carbonate-evaporitic rocks: mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain). The Science of the Total Environment 615: 526–539. doi: 10.1016/j. scitotenv.2017.09.269
  • Blasco M, Auquéa LF, Gimenoa MJ, Aceroa P, Gómeza J et al. (2019). Mineral equilibria and thermodynamic uncertainties in the geothermometrical characterisation of carbonate geothermal systems of low temperature. The case of the Alhama-Jaraba system (Spain). Geothermics 78: 170–182. doi: 10.1016/j. geothermics.2018.11.004
  • Bogomolov GV, Silin-Bekcurin AI (editors) (1955). Special Hydrogeology. Moscow, Soviet Union: Gosgeoltekhizdat (in Russian).
  • Boschetti T (2013). Oxygen isotope equilibrium in sulfate-water systems: a revision of geothermometric applications in lowenthalpy systems. Journal of Geochemical Exploration 124: 92–100. doi: 10.1016/j.gexplo.2012.08.011
  • Bozkurt E (2001). Neotectonics of Turkey – a synthesis. Geodinamica Acta 14: 3–30. doi: 10.1080/09853111.2001.11432432
  • Bozkuş C, Kumsar H, Özkul M, Hançer M (2001). Seismicity of active Honaz Fault under an extentional tectonic regime. In: International Earth Science Colloquium on the Aegean Region; İzmir, Turkey. pp. 7–16.
  • Cermak V, Hurtig E (1979). Heat flow map of Europe, 1/5,000,000. In: Cermak V, Rybach L (editors). Terrestrial heat flow in Europe. Springer-Verlag, Berlin Heidelberg, Germany. pp. 3-40.
  • Chiodini G, Frondini F, Marini L (1995). Theoretical geothermometers and $PCO_2$ indicators for aqueous solutions coming from hydrothermal systems of medium–low temperature hosted in carbonate-evaporite rocks. Application to the thermal springs of the Etruscan Swell. Italy. Applied Geochemistry 10 (3): 337– 346. doi: 10.1016/0883-2927(95)00006-6
  • Claes H, Török A, Soete J, Mohammadi Z, Vassilieva E et al. (2020). U/Th dating and open system behavior: implications for travertines based on the study of Süttő (Hungary) and Ballik (Turkey) sites. Quaternaire 31 (2): 117-132. doi: 10.4000/ quaternaire.13728
  • Claes H, Soete J, VanNoten K, El Desouky H, Erthal MM et al. (2015). Sedimentology, three–dimensional geobody reconstruction and carbondioxide origin of Pleistocene travertine deposits in the Ballık area (south-west Turkey). Sedimentology 62: 1408– 1445. doi: 10.1111/sed.12188
  • Clark ID, Fritz P (editors) (1997). Environmental Isotopes in Hydrogeology. New York, USA: Lewis Publishers. Craig H (1961). Isotopic variations in meteoric waters. Science 133: 1702–1703. doi: 10.1126/science.133.3465.1702
  • Cortecci G (1974). Oxygen isotopic ratios of sulfate ions-water pairs as a possible geothermometer. Geothermics 3: 60–64. doi: 10.1016/0375-6505(74)90021-2
  • Cortecci G, Dowgiałło J (1975). Oxygen and sulfur isotopic composition of the sulfate ions from mineral and thermal groundwaters of Poland. Journal of Hydrology 24: 271–282. doi:10.1016/0022-1694(75)90085-2
  • Crossey LJ, Fischer TP, Patchett JP, Karlstrom KE, Hilton DR et al. (2006). Dissected hydrologic system at the Grand Canyon: interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology 34: 25– 28. doi: 10.1130/G22057.1
  • Dilaver AT, Aydın B, Özyurt NN, Bayarı CS (2018). Türkiye Yağışlarının İzotop İçerikleri (2012-2016). Devlet Su İşleri Genel Müdürlüğü-Teknik Araştırma ve Kalite Kontrol Dairesi Başkanlığı ve Meteoroloji Genel Müdürlüğü-Araştırma Dairesi Başkanlığı, Ankara, Türkiye (in Turkish).
  • El Desouky H, Soete J, Claes H, Özkul M, Vanhaecke F et al. (2015). Novel applications of fluid inclusions and isotope geochemistry in unraveling the genesis of fossil travertine systems. Sedimentology 62 (1): 27–56. doi: 10.1111/sed.12137
  • Emre Ö, Duman TY, Özalp S, Elmacı H (2011). 1:250.000 scale active fault map series of Turkey, Denizli (NJ 35-12) Quadrangle. Serial number: 12, General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • EPDK (Energy Market Regulatory Authority of Turkey) (2021). Electricity Market Development Report 2021, Ankara [online]. Website www.epdk.gov.tr/Detay/Icerik/1-1271/ electricityreports [accessed 25 November 2021].
  • Evans EA (1966). Tritium and its Compounds. Princeton, N.J,. Van Nostrand, 441p.
  • Fouillac C, Fouillac AM, Criaud A (1990). Sulphur and oxygen isotopes of dissolved sulphur species in formation waters from the Dogger geothermal aquifer, Paris Basin, France. Applied Geochemistry 5 (4): 415–427. doi: 10.1016/0883- 2927(90)90018-Z
  • Fouillac C, Michard G (1981). Sodium/Lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 10 (1): 55–70. doi: 10.1016/0375-6505(81)90025-0
  • Fournier RO (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics 5: 41–50. doi: 10.1016/0375-6505(77)90007-4
  • Fournier RO, Truesdell AH (1973). An empirical Na-KCa geothermometer for natural waters. Geochimica et Cosmochimica Acta 37 (5): 1255–1275. doi: 10.1016/0016- 7037(73)90060-4
  • Fournier RO, Potter RW (1979). Magnesium correction to the Na-KCa chemical geothermometer. Geochimica et Cosmochimica Acta 43 (9): 1543–1550. doi: 10.1016/0016-7037(79)90147-9
  • Gat JR, Carmi I (1970). Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research 75 (15): 3039–3048. doi: 10.1029/ JC075i015p03039
  • Giggenbach WF (1988). Geothermal solute equilibria - derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta 52: 2749–2765. doi: 10.1016/0016-7037(88)90143-3
  • Güleç N, Hilton DR, Mutlu H (2002). Helium isotope variations in Turkey: relationship to tectonics, volcanism and recent seismic activities. Chemical Geology 187: 129–142. doi: 10.1016/ s0009-2541(02)00015-3
  • Gündoğan İ, Helvacı C, Sözbilir H (2008). Gypsiferous carbonates at Honaz Dağı (Denizli): First documentation of Triassic gypsum in western Turkey and its tectonic significance. Journal of Asian Earth Sciences 32: 49–65. doi: 10.1016/j.jseaes.2007.09.005
  • Halas S, Pluta I (2000). Empirical calibration of isotope thermometer $δ^{18}O$ $(SO_4^{2-})$–δ$δ^{18}O$ $(H_2O)$ for low temperature brines. In: V Isotope Workshop; Kraków, Poland. pp. 68–71.
  • Horvatinčić N, Özkul M, Gökgöz A, Barešić J (2005). Isotopic and geochemical investigation of tufa in Denizli province, Turkey. In: 1st International Symposium on Travertine; Denizli, Turkey. pp. 162–170.
  • İlkışık OM (1995). Regional heat flow in western Anatolia using silica temperature estimates from thermal springs. Tectonophysics 244 (1-3): 175–184. doi: 10.1016/0040-1951(94)00226-Y
  • Izbicki JA, Christensen AH, Newhouse MW, Aiken GR (2005). Inorganic, isotopic, and organic composition of high– chloride water from wells in a coastal southern California aquifer. Applied. Geochemistry 20: 1496–1517. doi: 10.1016/j. apgeochem.2005.04.010
  • Kampschulte A, Strauss H (2004). The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology 204: 255– 286. doi: 10.1016/j.chemgeo.2003.11.013
  • Karakuş H, Şimşek Ş (2013). Tracing deep thermal water circulation systems in the E–W trending Büyük Menderes Graben, western Turkey. Volcanology and Geothermal Researches 252: 38–52. doi: 10.1016/j.jvolgeores.2012.11.006
  • Kaya A (2015). The effects of extensional structures on the heat transport mechanism: An example from the Ortakçı geothermal field (Büyük Menderes Graben, SW Turkey). Journal of African Earth Sciences 108: 74–88. doi: 10.1016/j. jafrearsci.2015.05.002
  • Kele S, Özkul M, Forizs I, Gökgöz A., Baykara MO et al. (2011). Stable isotope geochemical and facies study of Pamukkale travertines: new evidences of low temperature non-equilibrium calcitewater fractionation. Sedimentary Geology 238: 191–212. doi: 10.1016/j.sedgeo.2011.04.015
  • Kendall C, Sklash MG, Bullen TD (1995) Isotope tracers of water and solute sources in catchments. In: Trudgill ST (editor). Solute modeling in catchment systems. New York, USA: John Wiley and Sons, pp. 261–303.
  • Kharaka YK, Mariner RH (1989). Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh T (Editors). Thermal History of Sedimentary Basins: Methods and Case Histories. New York, USA: Springer–Verlag, pp. 99–117.
  • Koçyiğit A (2005). Denizli Graben-Horst System and the eastern limit of the west Anatolian continental extension: Basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey. Geodinamica Acta 18: 167– 208. doi: 10.3166/ga.18.167-208.
  • KOERI (Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü) (2021). Recent Earthquakes in Turkey [online]. Website http://www.koeri.boun.edu.tr/sismo/zeqdb/default.asp [accessed 08 April 2021].
  • Konak N, Şenel M (2002). Geological map of Turkey in 1:500000 scale: Denizli sheet. General Directorate of Mineral Research and Exploration of Turkey.
  • Krouse HR (1976). Sulphur isotope variations in thermal and mineral waters. In: International Symposium on Water-Rock Interaction; Prague, Czechoslovakia. pp. 340–347.
  • Krouse HR, Mayer B (2000). Sulphur and oxygen isotopes in sulphate. In: Cook P, Herczeg AL (editors). Environmental tracers in subsurface hydrology. Norwell, MA, USA: Kluwer Academic Publishers, pp. 195–231. doi: 10.1007/978-1-4615-4557-6_7
  • Levet S, Toutain JP, Munoz M, Berger G, Negrel P et al. (2002). Geochemistry of the Bagnéres-de-Bigorre thermal waters from the North Pyrenean Zone (France). Geofluids 2: 25–40. doi: 10.1046/j.1468-8123.2002.00030.x
  • Lloyd RM (1968). Oxygen isotope behaviour in the sulfate-water system. Journal of Geophysical Research 73: 6099–6110. doi:10.1029/JB073i018p06099
  • Lucas LL, Unterweger MP (2000). Comprehensive review and critical evaluation of the half-life of tritium. Journal of Research of the National Institute of Standards and Technology 105 (4): 541- 549.
  • Mayo AL, Loucks MD (1995). Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. Journal of Hydrology 172 (1-4): 31–59. doi: 10.1016/0022- 1694(95)02748-E
  • McKenzie DP (1978). Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International 55 (1): 217–254. doi: 10.1111/j.1365-246X.1978. tb04759.x
  • McKenzie WF, Truesdell AH (1977). Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes. Geothermics 5: 51–61. doi: 10.1016/0375- 6505(77)90008-6
  • McLean W, Jankowski J, Lavitt N (2000). Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo O et al. (editors). Groundwater, Past Achievements and Future Challenges. Rotterdam, The Netherlands: A.A. Balkema, pp. 567–573.
  • Meybeck M (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science 287 (5): 401–428. doi: 10.2475/ajs.287.5.401
  • Minissale A, Kerrick DM, Magro G, Murrell MT, Paladini M et al. (2002). Geochemistry of Quaternary travertines in the region North of Rome (Italy): structural, hydrologic and paleoclimatologic implications. Earth and Planetary Science Letters 203: 709–728. doi: 10.1016/S0012-821X(02)00875-0
  • Mizutani Y (1972). Isotopic composition and underground temperature of the Otake geothermal water, Kyushu, Japan. Geochemical Journal 6: 67–73. doi: 10.2343/geochemj.6.67
  • Mizutani Y, Rafter TA (1969). Oxygen isotopic composition of sulphates. 3. Oxygen isotopic fractionation in the bisulfate ionwater system. New Zealand Journal of Science 12: 54–59.
  • Mutlu H, Güleç N (1998). Hydrogeochemical outline of thermal waters and geothermometry applications in Anatolia, Turkey. Journal of Volcanology and Geothermal Research 85: 495–515. doi: 10.1016/S0377-0273(98)00068-7
  • Mutlu H, Güleç N, Hilton DR, Aydın H, Halldorsson SA (2012). Spatial variations in gas and stable isotope compositions of thermal fluids around Lake Van: implications for crust–mantle dynamics in eastern Turkey. Chemical Geology 300–301: 165- 176. doi: 10.1016/j.chemgeo.2012.01.026
  • Mutlu H, Güleç N, Hilton DR (2008). Helium-carbon relationships in geothermal fluids of western Anatolia, Turkey. Chemical Geology 247: 305–321. doi: 10.1016/j.chemgeo.2007.10.021
  • Nicholson K (editor) (1993). Geothermal Fluids: Chemistry and Exploration Techniques. Berlin, Heidelberg, Germany: Springer–Verlag.
  • Okay Aİ (1989). Geology of Menderes Massif and Lycian Nappes to the south of Denizli. Bulletin of the Mineral Research and Exploration 109: 37–51.
  • Önhon E, Ertan I, Güler S, Nazik M, Kaplan A (1989). Research on the Origin of the Karst Waters in Yukarı Çürüksu Plain Using Isotope Techniques. Final Report. State Hydraulic Works, Ankara,Turkey.
  • Özkaymak Ç (2015). Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta 27: 109–128. doi: 10.1080/09853111.2014.957504
  • Özkul M, Kele S, Gökgöz A, Shen CC, Jones B et al. (2013). Comparison of the Quaternary travertine sites in the Denizli Extensional Basin based on their depositional and geochemical data. Sedimentary Geology 294: 179–204. doi: 10.1016/j. sedgeo.2013.05.018
  • Özkul M, Varol B, Alçiçek MC (2002). Depositional environments and petrography of the Denizli travertines. Bulletin of the Mineral Research and Exploration 125: 13–29.
  • Özler HM (2000). Hydrogeology and geochemistry in the Çürüksu (Denizli) hydrothermal field, western Turkey. Environmental Geology 39 (10): 1169–1180. doi: 10.1007/s002540000139
  • Özler HM (1999). Water balance and water quality in the Çürüksu Basin in WesternTurkey. Hydrogeology Journal 7: 405–418. doi: 10.1007/s100400050212
  • Panichi C, Tongiorgi E (1976). Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: a preliminary prospection method of geothermal areas. In: 2nd UN Symposium on the Development and Use of Geothermal Resources. San Francisco, USA. pp. 815–825.
  • Parkhurst DL, Appelo CAJ (1999). User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, onedimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report 99–4259.
  • Pastorelli S, Marini L, Hunziker JC (1999). Water chemistry and isotope composition of the Acquarossa thermal system, Ticino, Switzerland. Geothermics 28: 75–93. doi: 10.1016/S0375- 6505(98)00045-5
  • Pentecost A (editor) (2005). Travertine: New York, USA: SpringerVerlag. Rimstidt JD, Barnes HL (1980). The kinetics of silica-water reaction. Geochimica et Cosmochimica Acta 44 (11): 1683-1699. doi: 10.1016/0016-7037(80)90220-3
  • Rizzo AL, Uysal IT, Mutlu H, Ünal İmer E, Dirik K et al. (2019). Geochemistry of fluid inclusions in travertines from western and northern Turkey: inferences on the role of active faults in fluids circulation. Geochemistry, Geophysics, Geosystems 20 (11): 5473–5498. doi: 10.1029/2019GC008453
  • Roche V, Bouchot V, Beccaletto L, Jolivet L, Guillou-Frottier L et al. (2019). Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey). International Journal of Earth Sciences 108 (1): 301–328. doi: 10.1007/s00531-018-1655-1
  • Schoeller H (1934). Les echanges de bases dans les eaux souterraines; trois exemples es Tunisie. Bulletin de la Société géologique de France 4: 389–420.
  • Semerci Aygün B (2019). Pınarbaşı Karst Kaynağının (HonazDenizli) Boşalım Hidrodinamiği ve Hidrokimyasal Özelliklerinin İncelenmesi. MSc, Pamukkale Üniversity, Denizli, Türkiye (in Turkish).
  • Şimşek Ş (1985). Geothermal model of Denizli-Sarayköy-Buldan area. Geothermics 14: 393–417. doi: 10.1016/0375-6505(85)90078-1
  • Şimşek Ş (2003). Hydrogeological and isotopic survey of geothermal fields in the Büyük Menderes graben, Turkey. Geothermics 32: 669–678. doi: 10.1016/S0375-6505(03)00072-5
  • Şimşek Ş (2005). Research on isotope techniques for exploitation of geothermal reservoirs in Western Turkey, In: Use of isotope techniques to trace the origin of acidic fluids in geothermal systems. Vienna, Austria: IAEA TECDOC Publication. pp. 155–169.
  • Tarcan G (2005). Mineral saturation and scaling tendencies of waters discharged from wells (>150 °C) in geothermal areas of Turkey. Journal of Volcanology and Geothermal Research 142: 263– 283. doi: 10.1016/j.jvolgeores.2004.11.007
  • Truesdell AH (1976). Geochemical techniques in exploration. Summary of section III. In: Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources. San Francisco, California, USA. pp. iiixxix.
  • TS266 (2005). Waters intended for human consumption (İnsani tüketim amaçlı sular), ICS 13.060.20, Turkish Standards Institution, Ankara. (in Turkish)
  • Uysal T, Feng Y, Zhao J, Altunel E, Weatherley D et al. (2007). U-series dating and geochemical tracing of late Quaternary travertines in co-seismic fissures. Earth and Planetary Science Letters 257 (3-4): 450–462. doi: 10.1016/j.epsl.2007.03.004
  • Wang X, Lu G, Hu BX (2018). Hydrogeochemical characteristics and geothermometry applications of thermal waters in coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, Article ID 8715080: 1–24. doi: 10.1155/2018/8715080
  • Zeebe RE (2010). A new value for the stable oxygen isotope fractionation between dissolved sulfate ion and water. Geochimica et Cosmochimica Acta 74 (3): 818–828. doi: 10.1016/j.gca.2009.10.034
APA Gokgoz A, Mutlu H, Akman M (2022). Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. , 260 - 283. 10.3906/yer-2111-18
Chicago Gokgoz Ali,Mutlu Halim,Akman Mehmet Ali Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. (2022): 260 - 283. 10.3906/yer-2111-18
MLA Gokgoz Ali,Mutlu Halim,Akman Mehmet Ali Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. , 2022, ss.260 - 283. 10.3906/yer-2111-18
AMA Gokgoz A,Mutlu H,Akman M Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. . 2022; 260 - 283. 10.3906/yer-2111-18
Vancouver Gokgoz A,Mutlu H,Akman M Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. . 2022; 260 - 283. 10.3906/yer-2111-18
IEEE Gokgoz A,Mutlu H,Akman M "Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey." , ss.260 - 283, 2022. 10.3906/yer-2111-18
ISNAD Gokgoz, Ali vd. "Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey". (2022), 260-283. https://doi.org/10.3906/yer-2111-18
APA Gokgoz A, Mutlu H, Akman M (2022). Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. Turkish Journal of Earth Sciences, 31(3), 260 - 283. 10.3906/yer-2111-18
Chicago Gokgoz Ali,Mutlu Halim,Akman Mehmet Ali Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. Turkish Journal of Earth Sciences 31, no.3 (2022): 260 - 283. 10.3906/yer-2111-18
MLA Gokgoz Ali,Mutlu Halim,Akman Mehmet Ali Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. Turkish Journal of Earth Sciences, vol.31, no.3, 2022, ss.260 - 283. 10.3906/yer-2111-18
AMA Gokgoz A,Mutlu H,Akman M Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. Turkish Journal of Earth Sciences. 2022; 31(3): 260 - 283. 10.3906/yer-2111-18
Vancouver Gokgoz A,Mutlu H,Akman M Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey. Turkish Journal of Earth Sciences. 2022; 31(3): 260 - 283. 10.3906/yer-2111-18
IEEE Gokgoz A,Mutlu H,Akman M "Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey." Turkish Journal of Earth Sciences, 31, ss.260 - 283, 2022. 10.3906/yer-2111-18
ISNAD Gokgoz, Ali vd. "Hydrochemical characteristics and geothermometry applications of thermal waters in the Çürüksu Graben, western Turkey". Turkish Journal of Earth Sciences 31/3 (2022), 260-283. https://doi.org/10.3906/yer-2111-18