Yıl: 2022 Cilt: 46 Sayı: 2 Sayfa Aralığı: 182 - 203 Metin Dili: İngilizce DOI: 10.3906/tar-2202-18 İndeks Tarihi: 21-06-2022

Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production

Öz:
Human being has strong and historic connections with plants to fulfill food, feed, and shelter. Moreover, human uses plants as medicine for the treatment of various diseases. Plants are chemical factories for the biosynthesis of the huge number of secondary metabolites (SMs) that are directly used as a medicine or indirectly used in the development of commercial pharmaceutical drugs. Their improvement through classical breeding remains a difficult struggle for plant breeders. Hence, rapidly advancing research on the plant omics era has accelerated our understanding of the complex structure of SMs synthesis in medicinal and aromatic plants (MAPs). In addition, sequencing technologies and the completion of several genome sequences of MAPs have opened numerous opportunities for fine mapping and gene characterization. The accessibility of these technologies together with research of quantitative trait loci (QTL) and candidate genes for key characteristics such as SMs content and biologic activity and resistance to biotic and abiotic stresses pave the way for the development of new strategies for the improvement of MAPs. To explore the knowledge of SMs in MAPs, several reviews have been published over the last three decades for researchers with advanced knowledge of plant biotechnology. However, this review has offered a summary of the recent developments, limitations, and future potential in molecular breeding of MAPs species and their application to plant breeding.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aasim M, Khawar KM, Yalcin G, Bakhsh A (2014). Current trends ın fenugreek bıotechnology and approaches towards its improvement. American Journal of Social Issues and Humanities, 127-136 (Fenugreek Special Issue Mar/Apr 2014).
  • Aasim M, Kahveci B, Korkmaz E, Doğanay F, Bakırcı Ş et al. (2018a). TDZ-IBA induced adventitious shoot regeneration of water balm (Melissa. officinalis L.). Journal of Global Innovation on Agriculture and Social Sciences 6: 35-39.
  • Aasim M, Baloch FS, Joyia AN, Bakhsh A, Sameeullah M et al. (2018b). Fenugreek (Trigonella foenum-graecum L.) - an underutilized edible plant of modern world. In: Öztürk M, Hakeem KR, Ashraf M, Ahmad MSA (Eds). Global Perspectives on Underutilized Crops. Springer Nature, pp. 381-408.
  • Aasim M, Sameeullah M, Karataş M, Bakirci S, Bakhsh A et al. (2019). An insight into biotechnological approaches used for the improvement of secondary metabolites from the medicinal aquatic plant, water hyssop (Bacopa monnieri L.). In Natural Bio-active compounds (pp. 123-152). Springer, Singapore.
  • Ahmed S, Zhan C, Yang Y, Wang X, Yang T et al. (2016). The transcript profile of a traditional Chinese medicine, Atractylodes lancea, revealing its sesquiterpenoid biosynthesis of the major active components. PLoS One 11 (3): e0151975.
  • Ahrazem O, Trapero A, Gómez MD, Rubio-Moraga A, GómezGómez L et al. (2010). Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Genomics 96 (4): 239-250.
  • Akerele O (1992). Importance of medicinal plants: WHO’s programme. Importance of medicinal plants: WHO’s programme. 63-77.
  • Alagoz Y, Gurkok T, Zhang B, Unver T (2016). Manipulating the biosynthesis of bioactive compound alkaloids for nextgeneration metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Scientific Reports 6 (1): 1-9.
  • Ampofo JO, Ngadi M (2021). Stimulation of the phenylpropanoid pathway and antioxidant capacities by biotic and abiotic elicitation strategies in common bean (Phaseolus vulgaris) sprouts. Process Biochemistry 100: 98-106.
  • Angelova Z, Georgiev S, Roos W (2006). Elicitation of Plants. Biotechnology & Biotechnological Equipment 20 (2): 72-83. doi: 10.1080/13102818.2006.10817345
  • Assaf M, Korkmaz A, Karaman Ş, Kulak M (2022). Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. South African Journal of Botany 144: 480-493. doi: 10.1016/j.sajb.2021.10.030
  • Baek S, Ho TT, Lee H, Jung G, Kim YE et al. (2020). Enhanced biosynthesis of triterpenoids in Centella asiatica hairy root culture by precursor feeding and elicitation. Plant Biotechnology Reports 14 (1): 45-53.
  • Bahmani K (2021). Genetic Analysis of Important Metabolites in Fennel and Stevia (Doctoral dissertation, Michigan State University).
  • Bai X, Rivera-Vega L, Mamidala P, Bonello P, Herms DA et al. (2011). Transcriptomic signatures of ash (Fraxinus spp.) phloem. PLoS ONE 6: e16368.
  • Bains S, Thakur V, Kaur J, Singh K, Kaur R (2019). Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Genomics 111: 1474-1482. doi: 10.1016/j. ygeno.2018.09.022
  • Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002). Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of sweet basil (Ocimum basilicum L.). Plant Physiology and Biochemistry 40 (XI): 983-95. doi: 10.1016/ S0981-9428(02)01460-2
  • Baque MA, Shiragi MHK, Lee EJ, Paek KY (2012). Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of ’ Morinda citrifolia’(L.). Australian Journal of Crop Science 6 (9): 1349-1355.
  • Baydar H, Akçay UÇ, Kazaz S, Baydar NG (2021). Floral and molecular characterization of gamma rays induced mutants in oil-bearing rose (Rosa damascena Mill.). Ekin Journal of Crop Breeding and Genetics 7 (1): 21-33.
  • Baydar H, Telci İ (2015). Tıbbi ve aromatik bitkilerde ıslah, tohumluk, tescil ve sertifikasyon. TÜRKTOB Türkiye Tohumcular Birliği Dergisi 5: 12-21 (in Turkish).
  • Baydar H (2005). Tıbbi, Aromatik ve Keyf Bitkileri Bilimi ve Teknolojisi, Süleyman Demirel Üniversitesi Yayınları No: 51 (ISBN975-7929-79-4) 221 ss, Isparta (in Turkish).
  • Berkov S (2001). Size and alkaloid content of seeds in induced autotetraploids of Datura innoxia, Datura stramonium and Hyoscyamus niger. Pharmaceutical Biology 39 (5): 329-331.
  • Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK et al. (2013). Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 14 (1): 1-18.
  • Blankenburg M, Haberland L, Elvers HD, Tannert C, Jandrig B (2009). High-throughput omics technologies: potential tools for the investigation of influences of EMF on biological systems. Current genomics 10 (2): 86-92.
  • Brown AP, Kroon JT, Swarbreck D, Febrer M, Larson TR et al. (2012). Tissue-specific whole transcrip-tome sequencing in castor, directed at understanding triacylglyc- erol lipid biosynthetic pathways. PLoS ONE 7: e30100.
  • Cakır Ö, Turgut-Kara N, Arı Ş, Zhang B (2015). De novo transcriptome assembly and comparative analysis elucidate complicated mechanism regulating Astragalus chrysochlorus response to selenium stimuli. PloS one 10 (10): e0135677.
  • Casanova H, Ortiz C, Peláez C, Vallejo A, Moreno ME et al. (2002). Insecticide formulations based on nicotine oleate stabilized by sodium caseinate. Journal of Agricultural and Food Chemistry 50 (22): 6389-6394.
  • Celik I, Camci H, Kose A, Kosar FC, Doganlar S et al. (2016). Molecular genetic diversity and association mapping of morphine content and agronomic traits in Turkish opium poppy (Papaver somniferum) germplasm. Molecular Breeding 36 (4): 46.
  • Chakraborty P (2018). Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie open 6: 9-16.
  • Chen J, Dong X, Li Q, Zhou X, Gao S et al. (2013). Biosynthesis of the active compounds of Isatis indigotica based on transcriptome sequencing and metabolites profiling. BMC genomics 14 (1): 1-13.
  • Chen S, Luo H, Li Y, Sun Y, Wu Q et al. (2011) 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 30: 1593-1601
  • Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ et al. (2007). Plant terpenoids: biosynthesis and ecological functions. Journal of Integrative Plant Biology 49 (2): 179-186.
  • Choi Y, Kim S, Lee J (2020). Construction of an onion (Allium cepa L.) genetic linkage map using genotyping-by-sequencing analysis with a reference gene set and identification of QTLs controlling anthocyanin synthesis and content. Plants 9 (5): 616.
  • Coskun Y, Duran RE, Kilic S (2019). Striking effects of melatonin on secondary metabolites produced by callus culture of rosemary (Rosmarinus officinalis L.). Plant Cell, Tissue and Organ Culture (PCTOC) 138 (1): 89-95.
  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011). Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture (PCTOC): 106 (2): 279-288.
  • Dawande AA, Sahay S (2021). Copper sulphate elicitation of optimized suspension culture of Andrographis paniculata Nees yields unprecedented level of andrographolide. Journal of Microbiology, Biotechnology and Food Sciences 2021: 688- 694.
  • De Luca V, Salim V, Atsumi SM, Yu F (2012). Mining the biodiversity of plants: a revolution in the making. Science 336 (6089): 1658- 1661.
  • Dinh DV, Syed NMS, Mai PP, Van TB, Minh TN et al. (2020). De novo assembly and Transcriptome characterization of an endemic species of Vietnam, Panax vietnamensis Ha et Grushv., including the development of EST-SSR markers for population genetics. BMC Plant Biology 20: 159–138. doi: 10.1186/s12870-020-02571-5
  • Dixit S, Shukla A, Singh V, Upadhyay SK (2021). Bioprospecting of natural compounds for industrial and medical applications: current scenario and bottleneck. Bioprospecting of Plant Biodiversity for Industrial Molecules 53-71.
  • Doss A, Esther A, Rajalakshmi R (2022). Influence of UV-B treatment on the accumulation of free phenols and tannins in the legumes of Abrus precatorius L. and Vigna mungo (L.) Hepper. Phytomedicine Plus 2 (1): 100189.
  • Dwivedi N, Kumar R, Singh RK, Singh M (2014). QTL analysis associated with oleoresin content in intraspecific RIL population of chilli (Capsicum annuum L.). Journal of Applied Horticulture 16 (2): 107-111.
  • Eibl R, Meier P, Stutz I, Schildberger D, Hühn T et al. (2018). Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology 102 (20): 8661-8675.
  • Ettre LS, Zlatkis A (2011). 75 years of chromatography: a historical dialogue. Elsevier.
  • Fan G, Liu X, Sun S, Shi C, Du X et al. (2020). The chromosome level genome and Genome-Wide Association Study for the agronomic traits of Panax notoginseng. Iscience 23 (9): 101538.
  • Fatima K, Abbas SR, Zia M, Sabir SM, Khan RT et al. (2020). Induction of secondary metabolites on nanoparticles stress in callus culture of Artemisia annua L. Brazilian Journal of Biology 81: 474-483
  • Feng S, Song W, Fu R, Zhang H, Xu A et al. (2018) Application of the CRISPR/Cas9 system in Dioscorea zingiberensis. Plant Cell, Tissue and Organ Culture (PCTOC) 135: 133-141.
  • Feng WM, Liu P, Yan H, Yu G, Duan JA (2020). Transcriptomic data analyses of wild and cultivated Angelica sinensis root by highthroughput sequencing technology. Zhongguo Zhong Yao Za Zhi 45: 1879–1886. doi: 10.19540/j.cnki.cjcmm.20200208.101
  • Fu S, Lei M, Zhang Y, Deng Z, Shi J et al. (2019). De novo transcriptome analysis of Tibetan medicinal plant Dysphania schraderiana. Genetics and Molecular Biology 42: 480-487.
  • Gadzovska Simic S, Tusevski O, Maury S, Delaunay A, Joseph C et al. (2014). Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. The Scientific World Journal, https://doi.org/10.1155/2014/609649.
  • Gai S, Zhang Y, Mu P, Liu C, Liu S et al. (2012). Transcriptome analysis of tree peony during chilling requirement fulfillment: assembling, annotation and markers discovering. Gene 2: 256–262.
  • Ganie SH, Upadhyay P, Das S, Prasad Sharma M (2015). Authentication of medicinal plants by DNA markers. Plant Gene 4: 83-99.
  • Gong H, Rehman F, Yang T, Li Z, Zeng S et al. (2019). Construction of the first high-density genetic map and QTL mapping for photosynthetic traits in Lycium barbarum L. Molecular Breeding 39 (7): 1-13.
  • Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T et al. (2010). The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327 (5963): 328-331.
  • Güner A, Aslan S, Ekim T, Vural M, Babaç MT (2012). Türkiye bitkileri listesi. Damarlı Bitkiler, Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, 262 (in Turkish).
  • Guo LL, Guo DL, Yin WL, Hou X (2018). Tolerance strategies revealed in tree peony (Paeonia suffruticosa; Paeoniaceae) ecotypes differentially adapted to desiccation. Applications in Plant Sciences 6: e01191. doi: 10.1002/aps3.1191
  • Gupta P, Sharma S, Saxena S (2015). Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Applied Biochemistry and Biotechnology 176 (3): 863-874.
  • He D, Zhang J, Zhang XF, He SL, Xie DB et al. (2020). Development of SSR markers in Paeonia based on de novo transcriptomic assemblies. PLoS One 15: e0227794. doi: 10.1371/journal. pone.0227794
  • He M, Wang Y, Hua W, Zhang Y, Wang Z (2012). De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites.
  • Hina F, Yisilam G, Wang S, Li P, Fu CX (2020). De novo transcriptome assembly, gene annotation and SSR marker development in the moon seed genus Menispermum (Menispermaceae). Frontiers in Genetics 11: 380. doi: 10.3389/fgene.2020.00380
  • Hossain MA, Alrashdi YB, Al Touby S (2022). A review on essential oil analyses and biological activities of the traditionally used medicinal plant Thymus vulgaris L. International Journal of Secondary Metabolite 9 (1): 103-111.
  • Hou DY, Shi LC, Yang MM, Li J, Zhou S et al. (2018). De novo transcriptomic analysis of leaf and fruit tissue of Cornus officinalis using Illumina platform. PLoS One 13: e0192610. doi: 10.1371/journal.pone.0192610
  • Hu X, Neill S, Cai W, Tang Z (2003). Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid‐induced saponin accumulation in suspension‐cultured cells of Panax ginseng. Physiologia Plantarum 118 (3): 414-421.
  • Inyai C, Yusakul G, Komaikul J, Kitisripanya T, Likhitwitayawuid K (2021). Improvement of stilbene production by mulberry Morus alba root culture via precursor feeding and coelicitation. Bioprocess and Biosystems Engineering 44 (4): 653-660.
  • Iqbal, Ansari (2019). Biotechnological Exercises in the Production of Secondary Metabolites and Its Significance in Healthcare Practices. In: Akhtar MS, Swamy MK. Natural Bio-active Compounds Volume 3: Biotechnology, Bioengineering, and Molecular Approaches. Springer Nature Singapore Pte Ltd.
  • Jain SC, Agrawal M (1987). Effect of chemical mutagens on steroidal sapogenins in Trigonella species. Phytochemistry 26 (8): 2203- 2205.
  • Jamshidi M, Ghanati F, Rezaei A, Bemani E (2016). Change of antioxidant enzymes activity of hazel (Corylus avellana L.) cells by AgNPs. Cytotechnology 68 (3): 525-530.
  • Jang W, Lee HO, Kim JU, Lee JW, Hong CE et al. (2020). Complete mitochondrial genome and a set of 10 novel kompetitive allelespecific PCR markers in ginseng (Panax ginseng CA Mey.). Agronomy 10 (12): 1868.
  • Jansing J, Sack M, Augustine SM, Fischer R, Bortesi L (2019). CRISPR/ Cas9‐mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β‐1, 2‐xylose and core α‐1, 3‐fucose. Plant Biotechnology Journal 17: 350-361.
  • Javed R, Usman M, Yucesan B, Zia M, Gurel E (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry 110: 94-99.
  • Jayakodi M, Lee SC, Park HS, Jang WJ, Lee YS (2014). Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots. Journal of Ginseng Research 38: 278–288. doi: 10.1016/j. jgr.2014.05.008
  • Jordanov R, Zheljazkov V, Tsevtkov Raev R (1995). Induced polyploidy in lavender. In International Symposium on Medicinal and Aromatic Plants 426 (pp. 561-572).
  • Julio E, Denoyes-Rothan B, Verrier JL, De Borne FD (2006). Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Molecular Breeding 18 (1): 69-91.
  • Kabera JN, Semana E, Mussa AR, He X (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. Journal of Pharmacy and Pharmacology 2 (7): 377-392.
  • Kahveci H, Bilginer N, Diraz-Yildirim E, Kulak M, Yazar E, Kocacinar F et al. (2021). Priming with salicylic acid, ß-carotene and tryptophan modulates growth, phenolics, and essential oil components of Ocimum basilicum L. grown under salinity. Scientia Horticulturae 281: 109964 doi: 10.1016/j.scienta.2021.109964
  • Kapoor S, Raghuvanshi R, Bhardwaj P, Sood H, Saxena S et al. (2018). Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. Journal of Photochemistry and Photobiology B: Biology 183: 258-265.
  • Karakas FP (2020). Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators. Plant Physiology and Biochemistry 146: 384-391.
  • Karakas FP, Bozat BG (2020). Fluctuation in secondary metabolite production and antioxidant defense enzymes in in vitro callus cultures of goat’s rue (Galega officinalis) under different abiotic stress treatments. Plant Cell, Tissue and Organ Culture (PCTOC): 142(2): 401-414.
  • Karuppusamy S (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plants Research 3: 1222-1239.
  • Khurshid R, Ullah MA, Tungmunnithum D, Drouet S, Shah M et al. (2020). Lights triggered differential accumulation of antioxidant and antidiabetic secondary metabolites in callus culture of Eclipta alba L. Plos one 15 (6): e0233963.
  • Kiong AL, Mahmood M, Fodzillan NM, Daud SK (2005). Effects of precursor supplementation on the production of triterpenes by Centella asiatica callus culture. Pakistan Journal of Biological Sciences 8: 1160-1169
  • Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M et al. (2000). Linear β-1, 3 glucans are elicitors of defense responses in tobacco. Plant Physiology 124 (3): 1027-1038.
  • Koca N, Karaman S (2015). The effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil. Food Chemistry 166: 515-521. doi: 10.1016/j.foodchem.2014.06.065
  • Kolakar SS, Nadukeri S, Jakkeral SA, Hanumanthappa M, Gangaprasad S (2018). Role of mutation breeding in improvement of medicinal and aromatic crops: Review. J. Pharmacog. Phytochem 425-429.
  • Koul A, Mallubhotla S (2020). Elicitation and enhancement of bacoside production using suspension cultures of Bacopa monnieri (L.) Wettst. 3 Biotech 10: 1-4.
  • Kumar A, Shekhawat NS (2009). Plant tissue culture and molecular markers: their role in improving crop productivity. IK International, New Delhi, p 688.
  • Lade S, Pande V, Rana TS, Yadav HK (2020). Estimation of genetic diversity and population structure in Tinospora cordifolia using SSR markers. 3 Biotech 10: 413–425. doi: 10.1007/s13205-020- 02300-7
  • Laloo D, Kalita JM, Prasad SK (2021). Molecular docking studies of plant-derived bioactive compounds: A comprehensive in silico standardization approach. In Evidence Based Validation of Traditional Medicines (pp. 371-404). Springer, Singapore.
  • Lee YR, Kim CW, Han J, Choi HJ, Han K et al. (2021). Genotypingby-sequencing derived genetic linkage map and quantitative trait loci for sugar content in onion (Allium cepa L.). Plants 10 (11): 2267.
  • Legrand S, Valot N, Nicolé F, Moja S, Baudino S et al. (2010). One-step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the Labiate Salvia sclarea L. Gene 450: 55–62.
  • Li B, Wang B, Li H, Peng L, Ru M et al. (2016). Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation. Protoplasma 253 (1): 87-100.
  • Li H, Chen M, Zhou D, Chen S, Tao A (2011). QTL analysis of six important traits in tobacco (Nicotiana tabacum L.). Acta Agronomica Sinica 37 (9): 1577-1584.
  • Li H, Fu Y, Sun H, Zhang Y, Lan X (2017). Transcriptomic analyses reveal biosynthetic genes related to rosmarinic acid in Dracocephalum tanguticum. Scientific Reports 7: 74. doi: 10.1038/s41598-017-00078-y
  • Li X, Wang J, Ming L, Li L, Li Z (2016). Transcriptome analysis of storage roots and fibrous roots of the traditional medicinal herb Callerya speciosa (Champ.) ScHot. PLoS One 11: e0160338. doi: 10.1371/journal.pone.0160338
  • Li X, Wang J, Song Z (2019). Molecular maps and mapping of genes and qtls of Salvia miltiorrhiza. In The Salvia miltiorrhiza Genome (pp. 33-44). Springer, Cham.
  • Li XY, Zhou JW, Yan ZY, Chen X (2020). Sequencing and analysis of transcriptome to reveal regulation of gene expression in Salvia miltiorrhiza under moderate drought stress. Zhong Cao Yao 51: 1600–1608. doi: 10.7501/j.issn.0253-2670.2020.06.029
  • Li Y, Luo HM, Sun C, Song JY, Sun YZ et al. (2010a). EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomics 11: 268.
  • Li Y, Sun C, Luo HM, Li XW, Niu YY et al. (2010b.) Transcrip- tome characterization for Salvia miltiorrhiza using 454 GS FLX. Acta Pharmaceutica Sinica 45: 524–529.
  • Liao W, Mei Z, Miao L, Liu P, Gao R (2020). Comparative transcriptome analysis of root, stem, and leaf tissues of Entada phaseoloides reveals potential genes involved in triterpenoid saponin biosynthesis. BMC genomics 21 (1): 1-12.
  • Lin X, Zhang J, Li Y, Luo H, Wu Q et al. (2011). Functional genomics of a living fossil tree Ginkgo based on next generation sequencing technology. Physiol Plant 143: 207–218.
  • Liu MH, Yang BR, Cheung WF, Yang KY, Zhou HF et al. (2015). Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 16: 265. doi: 10.1186/s12864-015-1477-5
  • Liu MM, Zhu JH, Wu SB, Wang CK, Guo XY et al. (2018). De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis. Scientific Reports 8: 1236–1243. doi: 10.1038/ s41598-018-24201-9
  • Loke KK, Rahnamaie-Tajadod R, Yeoh CC, Goh HH, Noor NM (2017). Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. PeerJ 5: e2938. doi: 10.7717/peerj.2938
  • Luo H, Li Y, Sun C, Wu Q, Song J et al. (2010). Comparison of 454- ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biol 10: 209.
  • Luo H, Sun C, Sun Y, Wu Q, Li Y et al. (2011). Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12 (Suppl 5): S5.
  • Ma XH, Ma Y, Tang JF, He YL, Liu YC et al. (2015). The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules 20: 16235-16254.
  • Mahendran G, Iqbal Z, Kumar D, Verma SK, Rout PK et al. (2021). Enhanced gymnemic acids production in cell suspension cultures of Gymnema sylvestre (Retz.) R. Br. ex Sm. through elicitation. Industrial Crops and Products 162: 113234.
  • Malik MQ, Mujib A, Gulzar B, Zafar N, Syeed R et al. (2020). Enrichment of alliin in different in vitro grown tissues of Allium sativum through CdCl2 elicitation as revealed by high performance thin layer chromatography (HPTLC). Industrial Crops and Products 158: 113007.
  • Mehta A, Hasija Y (2018). Bioinformatics Approaches for Genomics and Post Genomics Applications of Anticancer Plants. In Anticancer Plants: Mechanisms and Molecular Interactions (pp. 283-317). Springer, Singapore.
  • Milward, EA, Shahandeh A, Heidari M, Johnstone DM, Daneshi N et al. (2016). Transcriptomics 160-165.
  • Mishra BK, Pathak S, Sharma A, Trivedi PK, Shukla S (2010). Modulated gene expression in newly synthesized autotetraploid of Papaver somniferum L. South African Journal of Botany 76 (3): 447-452.
  • Moetamedipoor SA, Jowkar A, Saharkhiz MJ, Hassani HS (2022). Hexaploidy induction improves morphological, physiological and phytochemical characteristics of mojito mint (Mentha × villosa). Scientia Horticulturae 295: 110810.
  • Mohammed Al-oubaidi HK, Kasid NM (2015). Increasing (phenolyic and flavoniods compoundes of Cicer arietinum L. from embryo explant using titanum dioxide nanoparticle in vitro. World Journal of Pharmaceutical Research 4: 1791-1799.
  • Morris R (2015). Spectrophotometry. Current Protocols Essential Laboratory Techniques 11 (1): 2-1.
  • Mustafa SK, Oyouni AA, Aljohani MM, Ahmad MA (2020). Polyphenols more than an antioxidant: Role and scope. Journal of Pure and Applied Microbiology 14 (1): 47-61.
  • Naik PM, Al-Khayri JM (2016). Abiotic and biotic elicitors-role in secondary metabolites production through in vitro culture of medicinal plants. Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives 247-277.
  • Nasim SA, Dhir B (2010). Heavy metals alter the potency of medicinal plants. Reviews of Environmental Contamination and Toxicology 139-149.
  • Nazir S, Jan H, Tungmunnithum D, Drouet S, Zia M et al. (2020). Callus Culture of Thai Basil Is an Effective Biological System for the Production of Antioxidants. Molecules 25 (20): 4859.
  • Ncube B, Staden JV (2015). Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules 20: 12698-12731
  • Nishihara M, Nakatsuka T (2011). Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnology Letters 33 (3): 433-441.
  • Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW et al. (2016). Plant cell culture strategies for the production of natural products. BMB reports 49 (3): 149.
  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003). Producing decaffeinated coffee plants. Nature 423 (6942): 823- 823.
  • Ono NN, Britton MT, Fass JN, Nicolet CM, Lin D (2012). Exploring the transcriptome landscape of pomegranate fruit peel for natural product biosynthetic gene and SSR marker discovery. Journal of Pure and Applied Microbiology in press doi: 10.1111/j.1744-7909.2011.01073.x
  • Otto LG, Mondal P, Brassac J, Preiss S, Degenhardt J et al. (2017). Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping. BMC genomics 18 (1): 599.
  • Padulosi S, Leaman D, Quek P (2002). Challenges and opportunities in enhancing the conservation and use of medicinal and aromatic plants. Journal of Herbs, Spices & Medicinal Plants 9 (4): 243-267.
  • Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal Y (2015). Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy 9 (3): 293-304.
  • Pank F (2006). Adaptation of medicinal and aromatic plants to contemporary quality and technological demands by breeding: aims, methods and trends. Rev. Bras. Plant Med.-Botucatu 8: 39-42.
  • Piatczak E, Kuzma L, Wysokinska H (2016). The influence of methyl jasmonate and salicylic acid on secondary metabolite production in Rehmannia glutinosa Libosch. hairy root culture. Acta Biologica Cracoviensia. Series Botanica 58 (1).
  • Pichersky E (1999). A day in the life of a linalool molecule: Chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant Species Biology 14 (2): 95-120.
  • Pickens LB, Tang Y, Chooi YH (2011). Metabolic engineering for the production of natural products. Annual Review of Chemical and Biomolecular Engineering 2: 211-236.
  • Porter TM, Hajibabaei M (2018). Scaling up: A guide to high‐ throughput genomic approaches for biodiversity analysis. Molecular Ecology 27 (2): 313-338.
  • Pragati C, Muniya R, Sangwan RS, Ravinder K, Anil K et al. (2018). De novo sequencing, assembly and characterisation of Aloe vera transcriptome and analysis of expression profiles of genes related to saponin and anthraquinone metabolism. BMC Genomics 19: 427. doi: 10.1186/s12864-018-4819-2
  • Prebihalo SE, Berrier KL, Freye CE, Bahaghighat HD, Moore NR et al. (2018). Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Analytical Chemistry 90 (1): 505-532.
  • Radman R, Saez T, Bucke C, Keshavarz T (2003). Elicitation of plant and microbial systems. Biotechnol Appl Biochem 37: 91-102
  • Ramawat KG, Goyal S (2020). Co-evolution of secondary metabolites during biological competition for survival and advantage: An overview. Co-Evolution of Secondary Metabolites 3-17.
  • Ramilowski JA, Sawai S, Seki H, Mochida K, Yoshida T et al. (2013). Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals. Plant and Cell Physiology 54 (5): 697-710.
  • Rani D, Buranasudja V, Kobtrakul K, De-Eknamkul W, Vimolmangkang S (2021). Elicitation of Pueraria candollei var. mirifica suspension cells promises antioxidant potential, implying antiaging activity. Plant Cell, Tissue and Organ Culture 145 (1): 29-41.
  • Rao K, Chodisetti B, Gandi S, Giri A, Kavi Kishor PB (2021). Cadmium chloride elicitation of Abutilon indicum cell suspension cultures for enhanced stigmasterol production. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 1-6.
  • Rao SR, Ravishankar GA (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology advances 20 (2): 101-153.
  • Rastogi S, Shah S, Kumar R, Vashisth D, Akhtar MQ, Dwived UN et al. (2019). Ocimum metabolomics in response to abiotic stresses: cold, flood, drought and salinity. PLoS One 14: e0210903. doi: 10.1371/journal.pone.0210903
  • Rubio A, Rambla JL, Santaella M, Gómez MD, Orzaez D et al. (2008). Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in β-ionone release. Journal of Biological Chemistry 283 (36): 24816-24825.
  • Ruzicka J, Berger-Büter K, Esslinger N, Novak J (2021). Assessment of the diversity of comfrey (Symphytum officinale L. and S.× uplandicum Nyman). Genetic Resources and Crop Evolution 1-13.
  • Sarin R (2005). Useful metabolites from plant tissue cultures. Biotechnology 4 (2): 79-93.
  • Satish L, Rency AS, Muthubharathi BC, Shamili S, Rameshkumar R et al. (2019). Transgenic plant cell cultures: a promising approach for secondary metabolite production. In Natural bioactive compounds (pp. 79-122). Springer, Singapore.
  • Savitha BC, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2006). Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochemistry 41 (1): 50-60.
  • Schippmann U, Leaman D, Cunningham A (2006). A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. Frontis, 75-95.
  • Shah M, Alharby HF, Hakeem KR, Ali N, Rahman IU, Munawar M et al. (2020). De novo transcriptome analysis of Lantana camara L. revealed candidate genes involved in phenylpropanoid biosynthesis pathway. Scientific Reports 10 467–486. doi: 10.1038/s41598-020-70635-5
  • Sharma M, Ahuja A, Gupta R, Mallubhotla S (2015). Enhanced bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors. Natural product research 29 (8): 745-749.
  • Sharma R, Chaudhary A, Sharma YP, Kumar S (2022). Plant Secondary Metabolite Determination Through Analytical Chromatographic Techniques: Recent Trends and Advancement. Plant Secondary Metabolites 77-95.
  • Shirley HJ, Koyioni M, Muncan F, Donohoe TJ (2019). Synthesis of lamellarin alkaloids using orthoester-masked α-keto acids. Chemical Science 10 (15): 4334-4338.
  • Sin VJ, Anand GS, Koh HL (2021). Botanical medicine and natural products used for erectile dysfunction. Sexual Medicine Reviews 9 (4): 568-592.
  • Singh A, Rani R, Sharma M (2018). Medicinal Herbs of Punjab (India). In Biol. Forum 10: 10-27.
  • Singh P, Singh G, Bhandawat A, Singh G, Parmar R et al. (2017). Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Scientific Reports 7: 45295. doi: 10.1038/srep45295
  • Śliwińska A, Naliwajski MR, Pietrosiuk A, Sykłowska-Baranek K (2021). In vitro response of Polyscias filicifolia (Araliaceae) shoots to elicitation with alarmone-diadenosine triphosphate, methyl jasmonate, and salicylic acid. Cells 10 (2): 419.
  • Sui C, Zhang J, Wei J, Chen S, Li Y et al. (2011). Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins. BMC Genomics 12: 539.
  • Sun HJ, Wei HJ (2018). The application of RNA-seq technology in the study of the transcriptome. Chinese Journal of Medical Research 16: 184–187. doi: 10.14033/j.cnki.cfmr.2018.20.089
  • Sun Y, Luo H, Li Y, Sun C, Song J et al. (2011). Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camp-tothecin biosynthesis and transport. BMC Genomics 12: 533.
  • Sun Y, Shang L, Zhu QH, Fan L, Guo L (2022). Twenty years of plant genome sequencing: Achievements and challenges. Trends in Plant Science 27 (4): 391-401. doi: 10.1016/j.tplants.2021.10.006
  • Tang Q, Ma X, Mo C, Wilson IW, Song C et al. (2011). An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expres- sion analysis. BMC Genomics 12: 343.
  • Tong Z, Zhou J, Xiu Z, Jiao F, Hu Y et al. (2020). Construction of a high-density genetic map with whole genome sequencing in Nicotiana tabacum L. Genomics 112 (2): 2028-2033.
  • Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD (2015). De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metabolic Engineering 31: 74-83.
  • Vallejo VA, Warner RM (2021). Identifying quantitative trait loci for steviol glycoside production in Stevia rebaudiana using transcriptome-derived SSRs. Industrial Crops and Products 161: 113176.
  • Wang C, Peng D, Zhu J, Zhao D, Shi Y et al. (2019). Transcriptome analysis of Polygonatum cyrtonema Hua: identification of genes involved in polysaccharide biosynthesis. Plant Methods 15 (1): 1-14.
  • Wang C, Zhu J, Liu M, Yang QS, Wu JW et al. (2018). De novo sequencing and transcriptome assembly of Arisaema heterophyllum Blume and identification of genes involved in isoflavonoid biosynthesis. Scientific Reports 8: 17643. doi: 10.1038/s41598-018-35664-1
  • Wang G, Du X, Ji J, Guan C, Li Z et al. (2015). De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Gene 555 (2): 458–463.
  • Wang LR, Xue YZ, Wang BD (2020). RNA sequencing analysis of flowers of Kernel Apricot (Prunus armeniaca L.) under low temperature stress. Molecular Plant Breeding 18: 6274–6279. doi: 10.13271/j.mpb.018.006274
  • Wang W, Xu J, Fang H, Li Z, Li M (2020). Advances and challenges in medicinal plant breeding. Plant Science 110573.
  • Wang Y, Hua W, Wang J, Hannoufa A, Xu Z et al. (2013). Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Molecular Genetics and Genomics 288 (3-4): 131–139.
  • Wang YS, Shahid MQ, Ghouri F, Baloch FS (2020). De novo assembly and annotation of the juvenile tuber transcriptome of a Gastrodia elata hybrid by RNA sequencing: detection of SSR markers. Biochemical Genetics 58: 914–934. doi: 10.1007/ S10528-020-09983-W
  • Wilson SA, Roberts SC (2014). Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Current Opinion in Biotechnology 26: 174-182.
  • Wu B, Li Y, Yan H, Ma Y, Luo H et al. (2012). Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genomics 13 (1): 1-22.
  • Wu D, Austin RS, Zhou S, Brown D (2013). The root transcriptome for North American ginseng assembled and profiled across seasonal development. BMC Genomics 14 (1): 1-14.
  • Wu Q, Sun C, Luo H, Li Y, Niu Y (2011). Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing. Planta Med 77: 394-400.
  • Wu YQ, Guo J, Zhou Q, Xin Y, Wang GB et al. (2018). De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis, transport and regulation in Ginkgo biloba. Industrial Crops and Products 124: 226-235. doi: 10.1016/j.indcrop.2018.07.060
  • Xu LY, Wang LY, Wei K, Tan LQ, Su JJ et al. (2018). High-density SNP linkage map construction and QTL mapping for flavonoidrelated traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing. BMC Genomics 19 (1): 1-11.
  • Xu W, Li R, Zhang N, Ma F, Jiao Y et al. (2014). Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Molecular Biology 86: 527–541. doi: 10.1007/s11103-014-0245-2
  • Yalavarthi C (2013). A review on identification strategy of phyto constituents present in herbal plants. International Journal of Research in Pharmaceutical Sciences 4 (2): 123-140.
  • Yamaner O, Erdag B (2013). Effects of sucrose and polyethylene glycol on hypericins content in Hypericum adenotrichum. Eurasian Journal of Biosciences 7 (1): 101-110.
  • Yan J, Qian L, Zhu W, Qiu J, Lu Q et al. (2020). Integrated analysis of the transcriptome and metabolome of purple and green leaves of Tetrastigma hemsleyanum reveals gene expression patterns involved in anthocyanin biosynthesis. PLoS One 15 (3): e0230154.
  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F et al. (2018). Response of plant secondary metabolites to environmental factors. Molecules 23 (4): 762.
  • Yang X, Qiu D, Zeng H, Yuan J, Mao J (2009). Purification and characterization of a glycoprotein elicitor from Alternaria tenuissima. World Journal of Microbiology and Biotechnology 25 (11): 2035-2042.
  • Yuan X, Li K, Huo W, Lu X (2018). De novo transcriptome sequencing and analysis to identify genes involved in the biosynthesis of flavonoids in Abrus mollis leaves. Russ. Journal of Plant Physiology 65: 333-344. doi: 10.1134/S1021443718030147
  • Zafar N, Mujib A, Ali M, Tonk D, Gulzar B et al. (2020). Cadmium chloride (CdCl2 ) elicitation improves reserpine and ajmalicine yield in Rauvolfia serpentina as revealed by high-performance thin-layer chromatography (HPTLC). 3 Biotech 10 (8): 1-14.
  • Zaker A, Sykora C, Gössnitzer F, Abrishamchi P, Asili J et al. (2015). Effects of some elicitors on tanshinone production in adventitious root cultures of Perovskia abrotanoides Karel. Industrial Crops and Products 67: 97-102.
  • Zammit M, Shoemake C, Attard E, Azzopardi LM (2014). The effects of anabasine and the alkaloid extract of Nicotiana glauca on Lepidopterous Larvae. International Journal of Biology 6 (3). doi: 10.5539/ijb.v6n3p46
  • Zeng S, Xiao G, Guo J, Fei Z, Xu Y et al. (2010). Devel- opment of an EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. et Zucc.) Maxim. BMC Genomics 11: 94.
  • Zengin G, Mahomoodally MF, Yıl dıztugay E, Jugreet S, Khan SU et al. (2022). Chemical Composition, Biological Activities and In Silico Analysis of Essential Oils of Three Endemic Prangos Species from Turkey. Molecules 27 (5): 1676.
  • Zhang F, Gao Q, Khan G, Luo K, Chen S (2014). Comparative transcriptome analysis of aboveground and underground tissues of Rhodiola algida, an important ethno-medicinal herb endemic to the Qinghai-Tibetan Plateau. Gene 553 (2): 90-97.
  • Zhang GH, Jiang NH, Song WL, Ma CH, Yang SC et al. (2016). De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine. Frontiers in Plant Science 7: 1-14
  • Zhang S, Wu Y, Jin J, Hu B, Zeng W et al. (2015a). De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis. Biochemical and Biophysical Research Communications 466 (3): 450-455.
  • Zhang X, Allan AC, Li C, Wang Y, Yao Q (2015b). De novo assembly and characterization of the transcriptome of the Chinese medicinal herb, Gentiana rigescens. International Journal of Molecular Sciences 16 (5): 11550-11573.
  • Zhao S, Tuan PA, Li X, Kim YB, Kim H et al. (2013). Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics 14 (1): 802-812.
  • Zobayed SMA, Afreen F, Kozai T (2007). Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condition. Environmental and Experimental Botany 59 (2): 109-116.
APA BARUT M, Azhar Nadeem M, AKGÜR Ö, Tansı S, Aasim M, ALTAF M, BALOCH F (2022). Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. , 182 - 203. 10.3906/tar-2202-18
Chicago BARUT MUZAFFER,Azhar Nadeem Muhammad,AKGÜR Özlem,Tansı Sezen,Aasim Muhammad,ALTAF Muhammad Tanveer,BALOCH Faheem Shehzad Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. (2022): 182 - 203. 10.3906/tar-2202-18
MLA BARUT MUZAFFER,Azhar Nadeem Muhammad,AKGÜR Özlem,Tansı Sezen,Aasim Muhammad,ALTAF Muhammad Tanveer,BALOCH Faheem Shehzad Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. , 2022, ss.182 - 203. 10.3906/tar-2202-18
AMA BARUT M,Azhar Nadeem M,AKGÜR Ö,Tansı S,Aasim M,ALTAF M,BALOCH F Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. . 2022; 182 - 203. 10.3906/tar-2202-18
Vancouver BARUT M,Azhar Nadeem M,AKGÜR Ö,Tansı S,Aasim M,ALTAF M,BALOCH F Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. . 2022; 182 - 203. 10.3906/tar-2202-18
IEEE BARUT M,Azhar Nadeem M,AKGÜR Ö,Tansı S,Aasim M,ALTAF M,BALOCH F "Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production." , ss.182 - 203, 2022. 10.3906/tar-2202-18
ISNAD BARUT, MUZAFFER vd. "Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production". (2022), 182-203. https://doi.org/10.3906/tar-2202-18
APA BARUT M, Azhar Nadeem M, AKGÜR Ö, Tansı S, Aasim M, ALTAF M, BALOCH F (2022). Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. Turkish Journal of Agriculture and Forestry, 46(2), 182 - 203. 10.3906/tar-2202-18
Chicago BARUT MUZAFFER,Azhar Nadeem Muhammad,AKGÜR Özlem,Tansı Sezen,Aasim Muhammad,ALTAF Muhammad Tanveer,BALOCH Faheem Shehzad Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. Turkish Journal of Agriculture and Forestry 46, no.2 (2022): 182 - 203. 10.3906/tar-2202-18
MLA BARUT MUZAFFER,Azhar Nadeem Muhammad,AKGÜR Özlem,Tansı Sezen,Aasim Muhammad,ALTAF Muhammad Tanveer,BALOCH Faheem Shehzad Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. Turkish Journal of Agriculture and Forestry, vol.46, no.2, 2022, ss.182 - 203. 10.3906/tar-2202-18
AMA BARUT M,Azhar Nadeem M,AKGÜR Ö,Tansı S,Aasim M,ALTAF M,BALOCH F Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. Turkish Journal of Agriculture and Forestry. 2022; 46(2): 182 - 203. 10.3906/tar-2202-18
Vancouver BARUT M,Azhar Nadeem M,AKGÜR Ö,Tansı S,Aasim M,ALTAF M,BALOCH F Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production. Turkish Journal of Agriculture and Forestry. 2022; 46(2): 182 - 203. 10.3906/tar-2202-18
IEEE BARUT M,Azhar Nadeem M,AKGÜR Ö,Tansı S,Aasim M,ALTAF M,BALOCH F "Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production." Turkish Journal of Agriculture and Forestry, 46, ss.182 - 203, 2022. 10.3906/tar-2202-18
ISNAD BARUT, MUZAFFER vd. "Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production". Turkish Journal of Agriculture and Forestry 46/2 (2022), 182-203. https://doi.org/10.3906/tar-2202-18