Yıl: 2021 Cilt: 29 Sayı: 3 Sayfa Aralığı: 1308 - 1353 Metin Dili: İngilizce DOI: 10.3906/elk-2012-80 İndeks Tarihi: 22-06-2022

A topological overview of microgrids: from maturity to the future

Öz:
The concept of microgrid (MG) has attracted great attention from the system operators for increasing operational effectiveness as well as providing more reliable, sustainable and economic power system. In this paper, a comprehensive investigation is presented to shine new light on evaluating changes in MG operation from maturity to the future. A great deal of literature studies consisting of the traditional MG architecture, encountered challenges and proposed solutions for overcoming them are all examined in detail. Also, the impact of highly integrated renewable-based energy sources into the power system is analysed by current studies. Moreover, modern MG architecture is extensively investigated from the point of operational flexibility such as energy storage systems (ESSs), combined structure of networked-MGs (NMGs) and demand-side management (DSM). Furthermore, incorporating MG architecture as a gridsupport service in power system resiliency enhancement strategies is investigated with current literature studies. As a result of this detail investigation, it can be deduced that the power system has witnessed radically new changes and outstanding developments in both generation and consumption side. Renewable power sources have been accepted as the major mile stone in the harnessing electricity and there have a strong trend towards penetrating these types of generation units in MG structure. On the other hand, increased concerns about safety problems and challenges in MG have triggered a huge amount of discussions in the literature.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] Parhizi S, Lotfi H, Khodaei A, Bahramirad S. State of the art in research on microgrids: a review. IEEE Access 2015; 3: 890-925. doi: 10.1109/ACCESS.2015.2443119
  • [2] Ton DT, Smith MA. The U.S. Department of Energy’s microgrid initiative. The Electricity Journal 2012; 25 (8): 84-94. doi: 10.1016/j.tej.2012.09.013
  • [3] Marnay C, Chatzivasileiadis S, Abbey C, Iravani R, Joos G et al. Microgrid evolution roadmap. In: 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST); Vienna, Austria; 2015. pp. 139-144.
  • [4] Komala K, Kumar KP, Cherukuri SHC. Storage and non-storage methods of power balancing to counter uncertainty in hybrid microgrids - a review. Journal of Energy Storage 2021; 36: 102348. doi: 10.1016/j.est.2021.102348
  • [5] Mohammed A, Refaat SS, Bayhan S, Abu-Rub H. AC microgrid control and management strategies: evaluation and review. IEEE Power Electronics Magazine 2019; 6 (2): 18-31. doi: 10.1109/MPEL.2019.2910292
  • [6] Anderson AA, Suryanarayanan S. Review of energy management and planning of islanded microgrids. CSEE Journal of Power and Energy Systems 2020; 6 (2): 329-343. doi: 10.17775/CSEEJPES.2019.01080
  • [7] Kroposki B, Basso T, DeBlasio R. Microgrid standards and technologies. In: 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century; Pittsburgh, PA, USA; 2008. pp. 1-4. [8] Guerrero JM, Chandorkar M, Lee T, Loh PC. Advanced control architectures for intelligent microgrids—Part i:
  • decentralized and hierarchical control. IEEE Transactions on Industrial Electronics 2013; 60 (4): 1254-1262. doi: 10.1109/TIE.2012.2194969
  • [9] Olivares DE, Mehrizi-Sani A, Etemadi AH, Cañizares CA, Iravani R et al. Trends in microgrid control. IEEE Transactions on Smart Grid 2014; 5 (4): 1905-1919. doi: 10.1109/TSG.2013.2295514
  • [10] Guerrero JM, Loh PC, Lee T, Chandorkar M. Advanced control architectures for intelligent microgrids—Part ii: power quality, energy storage, and ac/dc microgrids. IEEE Transactions on Industrial Electronics 2013; 60 (4): 1263-1270. doi: 10.1109/TIE.2012.2196889
  • [11] Bidram A, Davoudi A. Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid 2012; 3 (4): 1963-1976. doi: 10.1109/TSG.2012.2197425
  • [12] Dragičević T, Lu X, Vasquez JC, Guerrero JM. DC microgrids—Part i: a review of control strategies and stabilization techniques. IEEE Transactions on Power Electronics 2016; 31 (7): 4876-4891. doi: 10.1109/TPEL.2015.2478859
  • [13] Cagnano A, De Tuglie E, Mancarella P. Microgrids: overview and guidelines for practical implementations and operation. Applied Energy 2020; 258: 114039. doi: 10.1016/j.apenergy.2019.114039
  • [14] Han H, Hou X, Yang J, Wu J, Su M et al. Review of power sharing control strategies for islanding operation of ac microgrids. IEEE Transactions on Smart Grid 2016; 7 (1): 200-215. doi: 10.1109/TSG.2015.2434849
  • [15] Yazdanian M, Mehrizi-Sani A. Distributed control techniques in microgrids. IEEE Transactions on Smart Grid 2014; 5 (6): 2901-2909. doi: 10.1109/TSG.2014.2337838
  • [16] Majumder R. Some aspects of stability in microgrids. IEEE Transactions on Power Systems 2013; 28 (3): 3243-3252. doi: 10.1109/TPWRS.2012.2234146
  • [17] Colson CM, Nehrir MH. A review of challenges to real-time power management of microgrids. In: 2009 IEEE Power Energy Society General Meeting; Calgary, AB, Canada; 2009. pp. 1-8.
  • [18] Alonso-Martínez J, Carrasco JE, Arnaltes S. Table-based direct power control: a critical review for microgrid applications. IEEE Transactions on Power Electronics 2010; 25 (12): 2949-2961. doi: 10.1109/TPEL.2010.2087039
  • [19] Mahmoud MS, Rahman MSU, A.L.‐Sunni FM. Review of microgrid architectures – a system of systems perspective. IET Renewable Power Generation 2015; 9 (8): 1064-1078. doi:10.1049/iet-rpg.2014.0171
  • [20] Choudhary NK, Mohanty SR, Singh RK. A review on microgrid protection. In: 2014 International Electrical Engineering Congress (iEECON); Chonburi, Thailand; 2014. pp. 1–4.
  • [21] Habib HF, Lashway CR, Mohammed OA. On the adaptive protection of microgrids: a review on how to mitigate cyber attacks and communication failures. In: 2017 IEEE Industry Applications Society Annual Meeting; Cincinnati, OH, USA; 2017. pp. 1-8.
  • [22] Etxeberria A, Vechiu I, Camblong H, Vinassa JM, Camblong H. Hybrid energy storage systems for renewable energy sources integration in microgrids: a review. In: 2010 Conference Proceedings IPEC; Singapore; 2010. pp. 532-537.
  • [23] Ravichandran A, Malysz P, Sirouspour S, Emadi A. The critical role of microgrids in transition to a smarter grid: A technical review. In: 2013 IEEE Transportation Electrification Conference and Expo (ITEC); Detroit, MI, USA; 2013. pp. 1-7.
  • [24] Kulasekera AL, Gopura RARC, Hemapala KTMU, Perera N. A review on multi-agent systems in microgrid applications. In: ISGT2011-India; Kollam, India; 2011. pp. 173-177.
  • [25] Mostafa HA, Shatshat RE, Salama MMA. A review on energy management systems. In: 2014 IEEE PES T D Conference and Exposition; Chicago, IL, USA; 2014. pp. 1-5.
  • [26] Nanfang Yang, Paire D, Fei Gao, Miraoui A. Power management strategies for microgrid-a short review. In: 2013 IEEE Industry Applications Society Annual Meeting; Lake Buena Vista, FL, USA; 2013. pp. 1-9.
  • [27] Samad T, Koch E, Stluka P. Automated demand response for smart buildings and microgrids: the state of the practice and research challenges. Proceedings of the IEEE 2016; 104 (4): 726-744. doi: 10.1109/JPROC.2016.2520639
  • [28] Barnes M, Kondoh J, Asano H, Oyarzabal J, Ventakaramanan G et al. Real-world microgrids-an overview. In: 2007 IEEE International Conference on System of Systems Engineering; San Antonio, TX, USA; 2007. pp. 1-8.
  • [29] Dragičević T, Lu X, Vasquez JC, Guerrero JM. DC microgrids—Part ii: a review of power architectures, applications, and standardization issues. IEEE Transactions on Power Electronics 2016; 31 (5): 3528-3549. doi: 10.1109/TPEL.2015.2464277
  • [30] Hirsch A, Parag Y, Guerrero J. Microgrids: a review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews 2018; 90 : 402-411. doi: 10.1016/j.rser.2018.03.040
  • [31] Mariam L, Basu M, Conlon MF. Microgrid: architecture, policy and future trends. Renewable and Sustainable Energy Reviews 2016; 64: 477-489. doi: 10.1016/j.rser.2016.06.037
  • [32] Oueid RK. Microgrid finance, revenue, and regulation considerations. The Electricity Journal 2019; 32 (5): 2-9. doi: 10.1016/j.tej.2019.05.006
  • [33] De Souza ACZ, Castilla M (editors). Microgrids Design and Implementation. Cham, Switzerland: Springer International Publishing, 2019.
  • [34] Bist N, Sircar A, Yadav K. Holistic review of hybrid renewable energy in circular economy for valorization and management. Environmental Technology & Innovation 2020; 20: 101054. doi: 10.1016/j.eti.2020.101054.
  • [35] Meng L, Shafiee Q, Trecate GF, Karimi H, Fulwani D et al. Review on control of dc microgrids and multiple microgrid clusters. IEEE Journal of Emerging and Selected Topics in Power Electronics 2017; 5 (3): 928-948. doi: 10.1109/JESTPE.2017.2690219
  • [36] Faisal M, Hannan MA, Ker PJ, Hussain A, Mansor MB et al. Review of energy storage system technologies in microgrid applications: issues and challenges. IEEE Access 2018; 6 : 35143-35164. doi: 10.1109/ACCESS.2018.2841407
  • [37] Khodadoost Arani AA, Gharehpetian GB, Abedi M. Review on energy storage systems control methods in microgrids. International Journal of Electrical Power & Energy Systems 2019; 107: 745-757. doi: 10.1016/j.ijepes.2018.12.040
  • [38] Mwasilu F, Justo JJ, Kim E-K, Do TD, Jung J-W. Electric vehicles and smart grid interaction: a review on vehicle to grid and renewable energy sources integration. Renewable and Sustainable Energy Reviews 2014; 34: 501-516. doi: 10.1016/j.rser.2014.03.031
  • [39] Yong JY, Ramachandaramurthy VK, Tan KM, Mithulananthan N. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and Sustainable Energy Reviews 2015; 49: 365-385. doi: 10.1016/j.rser.2015.04.130
  • [40] Nosratabadi SM, Hooshmand R-A, Gholipour E. A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renewable and Sustainable Energy Reviews 2017; 67: 341-363. doi: 10.1016/j.rser.2016.09.025
  • [41] Lasseter B. Microgrids [distributed power generation]. In: 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194); Columbus, OH, USA; 2001. pp. 146-149.
  • [42] Xu Y, Sun H, Gu W, Xu Y, Li Z. Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid. IEEE Transactions on Industrial Informatics 2019; 15 (1): 225-235. doi: 10.1109/TII.2018.2795584
  • [43] Cai H, Hu G. Distributed robust hierarchical power sharing control of grid-connected spatially concentrated ac microgrid. IEEE Transactions on Control Systems Technology 2019; 27 (3): 1012-1022. doi: 10.1109/TCST.2017.2789182
  • [44] Delghavi MB, Yazdani A. Sliding-mode control of ac voltages and currents of dispatchable distributed energy resources in master-slave-organized inverter-based microgrids. IEEE Transactions on Smart Grid 2019; 10 (1): 980-991. doi: 10.1109/TSG.2017.2756935
  • [45] Sahoo S, Mishra S. A distributed finite-time secondary average voltage regulation and current sharing controller for dc microgrids. IEEE Transactions on Smart Grid 2019; 10 (1): 282-292. doi: 10.1109/TSG.2017.2737938
  • [46] Wang K, Yuan X, Geng Y, Wu X. A practical structure and control for reactive power sharing in microgrid. IEEE Transactions on Smart Grid 2019; 10 (2): 1880-1888. doi: 10.1109/TSG.2017.2779846
  • [47] Diaz G, Gonzalez-Moran C, Gomez-Aleixandre J, Diez A. Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids. IEEE Transactions on Power Systems 2010; 25 (1): 489-496. doi: 10.1109/TPWRS.2009.2030425
  • [48] Guerrero JM, Vasquez JC, Matas J, Vicuna LG de, Castilla M. Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization. IEEE Transactions on Industrial Electronics 2011; 58 (1): 158-172. doi: 10.1109/TIE.2010.2066534
  • [49] Yunwei Li, Vilathgamuwa DM, Poh Chiang Loh. Design, analysis, and real-time testing of a controller for multibus microgrid system. IEEE Transactions on Power Electronics 2004; 19 (5): 1195-1204. doi: 10.1109/TPEL.2004.833456
  • [50] Kroposki B, Pink C, DeBlasio R, Thomas H, Simões M et al. Benefits of power electronic interfaces for distributed energy systems. IEEE Transactions on Energy Conversion 2010; 25 (3): 901-908. doi: 10.1109/TEC.2010.2053975
  • [51] Yunwei Li, Vilathgamuwa DM, Poh Chiang Loh. Microgrid power quality enhancement using a three-phase fourwire grid-interfacing compensator. IEEE Transactions on Industry Applications 2005; 41 (6): 1707-1719. doi: 10.1109/TIA.2005.858262
  • [52] Chakraborty S, Simoes MG. Advanced active filtering in a single phase high frequency ac microgrid. In: 2005 IEEE 36th Power Electronics Specialists Conference; Dresden, Germany; 2005. pp. 191-197.
  • [53] Weiss G, Qing-Chang Zhong, Green TC, Jun Liang. H/sup /spl infin// repetitive control of dc-ac converters in microgrids. IEEE Transactions on Power Electronics 2004; 19 (1): 219-230. doi: 10.1109/TPEL.2003.820561
  • [54] Katiraei F, Iravani MR, Lehn PW. Micro-grid autonomous operation during and subsequent to islanding process. IEEE Transactions on Power Delivery 2005; 20 (1): 248-257. doi: 10.1109/TPWRD.2004.835051
  • [55] Macken KJP, Bollen MHJ, Belmans RJM. Mitigation of voltage dips through distributed generation systems. IEEE Transactions on Industry Applications 2004; 40 (6): 1686-1693. doi: 10.1109/TIA.2004.836302
  • [56] Nikkhajoei H, Iravani R. Steady-state model and power flow analysis of electronically-coupled distributed resource units. IEEE Transactions on Power Delivery 2007; 22 (1): 721–728. doi: 10.1109/TPWRD.2006.881604
  • [57] Biczel P. Power electronic converters in dc microgrid. In: 2007 Compatibility in Power Electronics; Gdansk, Poland; 2007. pp. 1-6.
  • [58] Hernandez-Aramburo CA, Green TC, Mugniot N. Fuel consumption minimization of a microgrid. IEEE Transactions on Industry Applications 2005; 41 (3): 673-681. doi: 10.1109/TIA.2005.847277
  • [59] Barklund E, Pogaku N, Prodanovic M, Hernandez-Aramburo C, Green TC. Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Transactions on Power Electronics 2008; 23 (5): 2346-2352. doi: 10.1109/TPEL.2008.2001910
  • [60] Jiang Q, Xue M, Geng G. Energy management of microgrid in grid-connected and stand-alone modes. IEEE Transactions on Power Systems 2013; 28 (3): 3380-3389. doi: 10.1109/TPWRS.2013.2244104
  • [61] Zhou H, Bhattacharya T, Tran D, Siew TST, Khambadkone AM. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications. IEEE Transactions on Power Electronics 2011; 26 (3): 923-930. doi: 10.1109/TPEL.2010.2095040
  • [62] Colson CM, Nehrir MH, Pourmousavi SA. Towards real-time microgrid power management using computational intelligence methods. In: IEEE PES General Meeting; Minneapolis, MN, USA; 2010. pp. 1-8.
  • [63] Yingyuan Zhang, Meiqin Mao, Ming Ding, Liuchen Chang. Study of energy management system for distributed generation systems. In: 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies; Nanjing, China; 2008. pp. 2465-2469.
  • [64] Kleftakis V, Lagos D, Papadimitriou C, Hatziargyriou ND. Seamless transition between interconnected and islanded operation of dc microgrids. IEEE Transactions on Smart Grid 2019; 10 (1): 248-256. doi: 10.1109/TSG.2017.2737595
  • [65] Mi Y, Zhang H, Fu Y, Wang C, Loh PC et al. Intelligent power sharing of dc isolated microgrid based on fuzzy sliding mode droop control. IEEE Transactions on Smart Grid 2019; 10 (3): 2396-2406. doi: 10.1109/TSG.2018.2797127
  • [66] Hans CA, Braun P, Raisch J, Grüne L, Reincke-Collon C. Hierarchical distributed model predictive control of interconnected microgrids. IEEE Transactions on Sustainable Energy 2019; 10 (1): 407-416. doi: 10.1109/TSTE.2018.2802922
  • [67] Deng Z, Xu Y, Sun H, Shen X. Distributed, bounded and finite-time convergence secondary frequency control in an autonomous microgrid. IEEE Transactions on Smart Grid 2019; 10 (3): 2776-2788. doi: 10.1109/TSG.2018.2810287
  • [68] Xu Y, Guo Q, Sun H, Fei Z. Distributed discrete robust secondary cooperative control for islanded microgrids. IEEE Transactions on Smart Grid 2019; 10 (4): 3620-3629. doi: 10.1109/TSG.2018.2833100
  • [69] Dehnavi G, Ginn HL. Distributed load sharing among converters in an autonomous microgrid including pv and wind power units. IEEE Transactions on Smart Grid 2019; 10 (4): 4289-4298. doi: 10.1109/TSG.2018.2856480
  • [70] Xia Y, Yu M, Yang P, Peng Y, Wei W. Generation-storage coordination for islanded dc microgrids dominated by pv generators. IEEE Transactions on Energy Conversion 2019; 34 (1): 130-138. doi: 10.1109/TEC.2018.2860247
  • [71] Chauhan PJ, Reddy BD, Bhandari S, Panda SK. Battery energy storage for seamless transitions of wind generator in standalone microgrid. IEEE Transactions on Industry Applications 2019; 55 (1): 69-77. doi: 10.1109/TIA.2018.2863662
  • [72] Ahmad J, Tahir M, Mazumder SK. Dynamic economic dispatch and transient control of distributed generators in a microgrid. IEEE Systems Journal 2019; 13 (1): 802-812. doi: 10.1109/JSYST.2018.2859755
  • [73] Duan J, Wang C, Xu H, Liu W, Xue Y et al. Distributed control of inverter-interfaced microgrids based on consensus algorithm with improved transient performance. IEEE Transactions on Smart Grid 2019; 10 (2): 1303-1312. doi: 10.1109/TSG.2017.2762601
  • [74] Roy TK, Mahmud MA. Dynamic stability analysis of hybrid islanded dc microgrids using a nonlinear backstepping approach. IEEE Systems Journal 2018; 12 (4): 3120-3130. doi: 10.1109/JSYST.2017.2769692
  • [75] Chen G, Guo Z. Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays. IEEE Transactions on Smart Grid 2019; 10 (2): 2002-2014. doi: 10.1109/TSG.2017.2785811
  • [76] Ullah S, Khan L, Badar R, Ullah A, Karam FW et al. Consensus based soc trajectory tracking control design for economic-dispatched distributed battery energy storage system. PLOS ONE 2020; 15 (5): e0232638. doi: 10.1371/journal.pone.0232638
  • [77] Ullah S, Khan L, Sami I, Ullah N. Consensus-based delay-tolerant distributed secondary control strategy for droop controlled ac microgrids. IEEE Access 2021; 9: 6033-6049. doi: 10.1109/ACCESS.2020.3048723
  • [78] Bose U, Chattopadhyay SK, Chakraborty C, Pal B. A novel method of frequency regulation in microgrid. In: 2016 IEEE 7th Power India International Conference (PIICON); Bikaner, India; 2016. pp. 1-6.
  • [79] Zhao-xia X, Mingke Z, Yu H, Guerrero JM, Vasquez JC. Coordinated primary and secondary frequency support between microgrid and weak grid. IEEE Transactions on Sustainable Energy 2019; 10 (4): 1718-1730. doi: 10.1109/TSTE.2018.2869904
  • [80] Iovine A, Carrizosa MJ, Damm G, Alou P. Nonlinear control for dc microgrids enabling efficient renewable power integration and ancillary services for ac grids. IEEE Transactions on Power Systems 2019; 34 (6): 5136-5146. doi: 10.1109/TPWRS.2018.2871369
  • [81] Baghaee HR, Mirsalim M, Gharehpetian GB, Talebi HA. A decentralized power management and sliding mode control strategy for hybrid ac/dc microgrids including renewable energy resources. IEEE Transactions on Industrial Informatics 2017. doi: 10.1109/TII.2017.2677943
  • [82] Baghaee HR, Mirsalim M, Gharehpetian GB, Talebi HA. Decentralized sliding mode control of wg/pv/fc microgrids under unbalanced and nonlinear load conditions for on- and off-grid modes. IEEE Systems Journal 2018; 12 (4): 3108-3119. doi: 10.1109/JSYST.2017.2761792
  • [83] Han Y, Li H, Shen P, Coelho EAA, Guerrero JM. Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Transactions on Power Electronics 2017; 32 (3): 2427-2451. doi: 10.1109/TPEL.2016.2569597
  • [84] Rezkallah M, Chandra A, Singh B, Singh S. Microgrid: configurations, control and applications. IEEE Transactions on Smart Grid 2019; 10 (2): 1290-1302. doi: 10.1109/TSG.2017.2762349
  • [85] Yallamilli RS, Mishra MK. Instantaneous symmetrical component theory based parallel grid side converter control strategy for microgrid power management. IEEE Transactions on Sustainable Energy 2019; 10 (2): 682-692. doi: 10.1109/TSTE.2018.2845469
  • [86] Vazquez N, Yu SS, Chau TK, Fernando T, Iu HH. A fully decentralized adaptive droop optimization strategy for power loss minimization in microgrids with pv-bess. IEEE Transactions on Energy Conversion 2019; 34 (1): 385-395. doi: 10.1109/TEC.2018.2878246
  • [87] Baranwal M, Askarian A, Salapaka S, Salapaka M. A distributed architecture for robust and optimal control of dc microgrids. IEEE Transactions on Industrial Electronics 2019; 66 (4): 3082-3092. doi: 10.1109/TIE.2018.2840506
  • [88] Zhao X, Chen C, Lai J. A high-efficiency active-boost-rectifier-based converter with a novel double-pulse duty cycle modulation for pv to dc microgrid applications. IEEE Transactions on Power Electronics 2019; 34 (8): 7462-7473. doi: 10.1109/TPEL.2018.2878225
  • [89] Tu C, Xiao F, Lan Z, Guo Q, Shuai Z. Analysis and control of a novel modular-based energy router for dc microgrid cluster. IEEE Journal of Emerging and Selected Topics in Power Electronics 2019; 7 (1): 331-342. doi: 10.1109/JESTPE.2018.2878004
  • [90] Jia H, Xiao Q, He J. An improved grid current and dc capacitor voltage balancing method for three-terminal hybrid ac/dc microgrid. IEEE Transactions on Smart Grid 2019; 10 (6): 5876-5888. doi: 10.1109/TSG.2018.2834340
  • [91] Vuyyuru U, Maiti S, Chakraborty C, Pal BC. A series voltage regulator for the radial dc microgrid. IEEE Transactions on Sustainable Energy 2019; 10 (1): 127-136. doi: 10.1109/TSTE.2018.2828164.
  • [92] Adly M, Strunz K. Efficient digital control for mpp tracking and output voltage regulation of partially shaded pv modules in dc bus and dc microgrid systems. IEEE Transactions on Power Electronics 2019; 34 (7): 6309-6319. doi: 10.1109/TPEL.2018.2873753
  • [93] Teimourzadeh S, Aminifar F, Davarpanah M, Shahidehpour M. Adaptive protection for preserving microgrid security. IEEE Transactions on Smart Grid 2019; 10 (1): 592-600. doi: 10.1109/TSG.2017.2749301.
  • [94] Yu JJQ, Hou Y, Lam AYS, Li VOK. Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks. IEEE Transactions on Smart Grid 2019; 10 (2): 1694-1703. doi: 10.1109/TSG.2017.2776310.
  • [95] Soleimanisardoo A, Karegar HK, Zeineldin HH. Differential frequency protection scheme based on off-nominal frequency injections for inverter-based islanded microgrids. IEEE Transactions on Smart Grid 2019; 10 (2): 2107- 2114. doi: 10.1109/TSG.2017.2788851
  • [96] Mohanty R, Pradhan AK. DC ring bus microgrid protection using the oscillation frequency and transient power. IEEE Systems Journal 2019; 13 (1): 875-884. doi: 10.1109/JSYST.2018.2837748
  • [97] Zhang F, Mu L. A fault detection method of microgrids with grid-connected inverter interfaced distributed generators based on the pq control strategy. IEEE Transactions on Smart Grid 2019; 10 (5): 4816-4826. doi: 10.1109/TSG.2018.2868967
  • [98] Zhang Z, Chen Q, Xie R, Sun K. The fault analysis of pv cable fault in dc microgrids. IEEE Transactions on Energy Conversion 2019; 34 (1): 486-496. doi: 10.1109/TEC.2018.2876669
  • [99] Lakshminarayanan V, Chemudupati VGS, Pramanick SK, Rajashekara K. Real-time optimal energy management controller for electric vehicle integration in workplace microgrid. IEEE Transactions on Transportation Electrification 2019; 5 (1): 174-185. doi: 10.1109/TTE.2018.2869469
  • [100] Derakhshandeh SY, Ghiasian A, Masoum MAS. A new time-decoupled framework for pevs charging and scheduling in industrial microgrids. IEEE Transactions on Smart Grid 2019; 10 (1): 568-577. doi: 10.1109/TSG.2017.2748970
  • [101] Zhong W, Xie K, Liu Y, Yang C, Xie S. Topology-aware vehicle-to-grid energy trading for active distribution systems. IEEE Transactions on Smart Grid 2019; 10 (2): 2137-2147. doi: 10.1109/TSG.2018.2789940
  • [102] Li D, Yang Q, An D, Yu W, Yang X et al. On location privacy-preserving online double auction for electric vehicles in microgrids. IEEE Internet of Things Journal 2019; 6 (4): 5902-5915. doi: 10.1109/JIOT.2018.287244
  • [103] Zhang Y, Yang Q, Yu W, An D, Li D et al. An online continuous progressive second price auction for electric vehicle charging. IEEE Internet of Things Journal 2019; 6 (2): 2907-2921. doi: 10.1109/JIOT.2018.2876422
  • [104] Sbordone D, Bertini I, Di Pietra B, Falvo MC, Genovese A et al. EV fast charging stations and energy storage technologies: a real implementation in the smart micro grid paradigm. Electric Power Systems Research 2015; 120: 96-108. doi: 10.1016/j.epsr.2014.07.033
  • [105] Chen C, Duan S. Optimal integration of plug-in hybrid electric vehicles in microgrids. IEEE Transactions on Industrial Informatics 2014; 10 (3): 1917-1926. doi: 10.1109/TII.2014.2322822
  • [106] Li B, Chen T, Wang X, Giannakis GB. Real-time energy management in microgrids with reduced battery capacity requirements. IEEE Transactions on Smart Grid 2019; 10 (2): 1928-1938. doi: 10.1109/TSG.2017.2783894
  • [107] Chiş A, Koivunen V. Coalitional game-based cost optimization of energy portfolio in smart grid communities. IEEE Transactions on Smart Grid 2019; 10 (2): 1960-1970. doi: 10.1109/TSG.2017.2784902
  • [108] Zhao H, Hong M, Lin W, Loparo KA. Voltage and frequency regulation of microgrid with battery energy storage systems. IEEE Transactions on Smart Grid 2019; 10 (1): 414-424. doi: 10.1109/TSG.2017.2741668
  • [109] Mu C, Zhang Y, Jia H, He H. Energy-storage-based intelligent frequency control of microgrid with stochastic model uncertainties. IEEE Transactions on Smart Grid 2020; 11 (2): 1748-1758. doi: 10.1109/TSG.2019.2942770
  • [110] Li Y, He L, Liu F, Li C, Cao Y et al. Flexible voltage control strategy considering distributed energy storages for dc distribution network. IEEE Transactions on Smart Grid 2019; 10 (1): 163-172. doi: 10.1109/TSG.2017.2734166
  • [111] Choi J, Shin Y, Choi M, Park W, Lee I. Robust control of a microgrid energy storage system using various approaches. IEEE Transactions on Smart Grid 2019; 10 (3): 2702-2712. doi: 10.1109/TSG.2018.2808914
  • [112] Badwawi RA, Issa WR, Mallick TK, Abusara M. Supervisory control for power management of an islanded ac microgrid using a frequency signalling-based fuzzy logic controller. IEEE Transactions on Sustainable Energy 2019; 10 (1): 94-104. doi: 10.1109/TSTE.2018.2825655
  • [113] Zhu Y, Zhao D, Li X, Wang D. Control-limited adaptive dynamic programming for multi-battery energy storage systems. IEEE Transactions on Smart Grid 2019; 10 (4): 4235-4244. doi: 10.1109/TSG.2018.2854300
  • [114] Qin Y, Hua H, Cao J. Stochastic optimal control scheme for battery lifetime extension in islanded microgrid via a novel modeling approach. IEEE Transactions on Smart Grid 2019; 10 (4): 4467-4475. doi: 10.1109/TSG.2018.2861221
  • [115] Yao S, Wang P, Zhao T. Transportable energy storage for more resilient distribution systems with multiple microgrids. IEEE Transactions on Smart Grid 2019; 10 (3): 3331-3341. doi: 10.1109/TSG.2018.2824820
  • [116] Kim J, Dvorkin Y. Enhancing distribution system resilience with mobile energy storage and microgrids. IEEE Transactions on Smart Grid 2019; 10 (5): 4996-5006. doi: 10.1109/TSG.2018.2872521
  • [117] Abdulgalil MA, Khalid M, Alshehri J. Microgrid reliability evaluation using distributed energy storage systems. In: 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia); Chengdu, China; 2019. pp. 2837-2841.
  • [118] Pourmousavi SA, Nehrir MH. Demand response for smart microgrid: initial results. In: ISGT 2011; Anaheim, CA, USA; 2011. pp. 1-6.
  • [119] Hemapala KTMU, Kulasekera AL. Demand side management for microgrids through smart meters. In: Power and Energy Systems; Phuket, Thailand; 2012.
  • [120] Hee-Jun Cha, Jin-Young Choi, Dong-Jun Won. Smart load management in demand response using microgrid ems. In: 2014 IEEE International Energy Conference (ENERGYCON); Cavtat, Croatia; 2014. pp. 833-837.
  • [121] Zhang C, Xu Y, Dong ZY, Wong KP. Robust coordination of distributed generation and price-based demand response in microgrids. IEEE Transactions on Smart Grid 2018; 9 (5): 4236-4247. doi: 10.1109/TSG.2017.2653198
  • [122] Acharya S, El-Moursi MS, Al-Hinai A, Al-Sumaiti AS, Zeineldin HH. A control strategy for voltage unbalance mitigation in an islanded microgrid considering demand side management capability. IEEE Transactions on Smart Grid 2019; 10 (3): 2558-2568. doi: 10.1109/TSG.2018.2804954
  • [123] Yang X, Zhang Y, He H, Ren S, Weng G. Real-time demand side management for a microgrid considering uncertainties. IEEE Transactions on Smart Grid 2019; 10 (3): 3401-3414. doi: 10.1109/TSG.2018.2825388
  • [124] Yang X, Zhang Y, Wu H, He H. An event-driven adr approach for residential energy resources in microgrids with uncertainties. IEEE Transactions on Industrial Electronics 2019; 66 (7): 5275-5288. doi: 10.1109/TIE.2018.2868019
  • [125] Bhamidi L, Sivasubramani S. Optimal planning and operational strategy of a residential microgrid with demand side management. IEEE Systems Journal 2020; 14 (2): 2624-2632. doi: 10.1109/JSYST.2019.2918410
  • [126] Li Z, Xu Y, Feng X, Wu Q. Optimal stochastic deployment of heterogeneous energy storage in a residential multienergy microgrid with demand-side management. IEEE Transactions on Industrial Informatics 2021; 17 (2): 991-1004. doi: 10.1109/TII.2020.2971227
  • [127] Aderibole A, Zeineldin HH, Hosani MA, El-Saadany EF. Demand side management strategy for droop-based autonomous microgrids through voltage reduction. IEEE Transactions on Energy Conversion 2019; 34 (2): 878-888. doi: 10.1109/TEC.2018.2877750
  • [128] Herath PU, Fusco V, Cáceres MN, Venayagamoorthy GK, Squartini S et al. Computational intelligence-based demand response management in a microgrid. IEEE Transactions on Industry Applications 2019; 55 (1): 732-740. doi: 10.1109/TIA.2018.2871390
  • [129] Nazemi SD, Mahani K, Ghofrani A, Amini M, Kose BE et al. Techno-economic analysis and optimization of a microgrid considering demand-side management. In: 2020 IEEE Texas Power and Energy Conference (TPEC); College Station, TX, USA; 2020. pp. 1-6.
  • [130] Abedini M, Moradi MH, Hosseinian SM. Optimal management of microgrids including renewable energy scources using gpso-gm algorithm. Renewable Energy 2016; 90: 430-439. doi: 10.1016/j.renene.2016.01.014
  • [131] Conti S, Nicolosi R, Rizzo SA, Zeineldin HH. Optimal dispatching of distributed generators and storage systems for mv islanded microgrids. IEEE Transactions on Power Delivery 2012; 27 (3): 1243-1251. doi: 10.1109/TPWRD.2012.2194514
  • [132] Gazijahani FS, Hosseinzadeh H, Abadi AA, Salehi J. Optimal day ahead power scheduling of microgrids considering demand and generation uncertainties. In: 2017 Iranian Conference on Electrical Engineering (ICEE); Tehran; 2017. pp. 943-948.
  • [133] Chaouachi A, Kamel RM, Andoulsi R, Nagasaka K. Multiobjective intelligent energy management for a microgrid. IEEE Transactions on Industrial Electronics 2013; 60 (4): 1688-1699. doi: 10.1109/TIE.2012.2188873
  • [134] Arcos-Aviles D, Guinjoan F, Pascual J, Marroyo L, Sanchis P et al. A Review of Fuzzy-Based Residential GridConnected Microgrid Energy Management Strategies for Grid Power Profile Smoothing. In: Motoasca E, Agarwal AK, Breesch H (editors). Singapore: Springer, 2019, pp. 165-199.
  • [135] Arcos-Aviles D, Pascual J, Marroyo L, Sanchis P, Guinjoan F. Fuzzy logic-based energy management system design for residential grid-connected microgrids. IEEE Transactions on Smart Grid 2018; 9 (2): 530-543. doi: 10.1109/TSG.2016.2555245
  • [136] Arcos-Aviles D, Pascual J, Guinjoan F, Marroyo L, Sanchis P et al. Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting. Applied Energy 2017; 205: 69-84. doi: 10.1016/j.apenergy.2017.07.123
  • [137] Pascual J, Barricarte J, Sanchis P, Marroyo L. Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting. Applied Energy 2015; 158: 12-25. doi: 10.1016/j.apenergy.2015.08.040
  • [138] Pascual J, Sanchis P, Marroyo L. Implementation and control of a residential electrothermal microgrid based on renewable energies, a hybrid storage system and demand side management. Energies 2014; 7 (1): 210-237. doi: 10.3390/en7010210
  • [139] Dietrich K, Latorre JM, Olmos L, Ramos A. Demand response in an isolated system with high wind integration. IEEE Transactions on Power Systems 2012; 27 (1): 20-29. doi: 10.1109/TPWRS.2011.2159252
  • [140] Pourmousavi SA, Nehrir MH, Sharma RK. Multi-timescale power management for islanded microgrids including storage and demand response. IEEE Transactions on Smart Grid 2015; 6 (3): 1185-1195. doi: 10.1109/TSG.2014.2387068
  • [141] Tsikalakis AG, Hatziargyriou ND. Centralized control for optimizing microgrids operation. In: 2011 IEEE Power and Energy Society General Meeting; Detroit, MI, USA; 2011. pp. 1-8.
  • [142] Bui V, Hussain A, Kim H. A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Transactions on Smart Grid 2018; 9 (2): 1323-1333. doi: 10.1109/TSG.2016.2585671
  • [143] Alharbi W, Bhattacharya K. Demand response and energy storage in mv islanded microgrids for high penetration of renewables. In: 2013 IEEE Electrical Power Energy Conference; Halifax, NS, Canada; 2013. pp. 1-6.
  • [144] Çimen H, Çetinkaya N, Vasquez JC, Guerrero JM. A microgrid energy management system based on nonintrusive load monitoring via multitask learning. IEEE Transactions on Smart Grid 2021; 12 (2): 977-987. doi: 10.1109/TSG.2020.3027491
  • [145] Tayab UB, Zia A, Yang F, Lu J, Kashif M. Short-term load forecasting for microgrid energy management system using hybrid hho-fnn model with best-basis stationary wavelet packet transform. Energy 2020; 203: 117857. doi: 10.1016/j.energy.2020.117857
  • [146] Meng L, Sanseverino ER, Luna A, Dragicevic T, Vasquez JC, Guerrero JM. Microgrid supervisory controllers and energy management systems: a literature review. Renewable and Sustainable Energy Reviews 2016; 60: 1263-1273. doi: 10.1016/j.rser.2016.03.003
  • [147] Zia MF, Elbouchikhi E, Benbouzid M. Microgrids energy management systems: a critical review on methods, solutions, and prospects. Applied Energy 2018; 222: 1033-1055. doi: 10.1016/j.apenergy.2018.04.103
  • [148] Arcos-Aviles D, García-Gutierrez G, Guinjoan F, Ayala P, Ibarra A et al. Fuzzy-based power exchange management between grid-tied interconnected residential microgrids. In: 2020 IEEE ANDESCON; Quito, Ecuador; 2020. pp. 1-7.
  • [149] Gamarra C, Guerrero JM. Computational optimization techniques applied to microgrids planning: a review. Renewable and Sustainable Energy Reviews 2015; 48: 413-424. doi: 10.1016/j.rser.2015.04.025
  • [150] Peças Lopes JA, Polenz SA, Moreira CL, Cherkaoui R. Identification of control and management strategies for lv unbalanced microgrids with plugged-in electric vehicles. Electric Power Systems Research 2010; 80 (8): 898-906. doi: 10.1016/j.epsr.2009.12.013
  • [151] López MA, Martín S, Aguado JA, De La Torre S. V2G strategies for congestion management in microgrids with high penetration of electric vehicles. Electric Power Systems Research 2013; 104: 28-34. doi: 10.1016/j.epsr.2013.06.005
  • [152] Karfopoulos EL, Papadopoulos P, Skarvelis-Kazakos S, Grau I, Cipcigan LM et al. Introducing electric vehicles in the microgrids concept. In: 2011 16th International Conference on Intelligent System Applications to Power Systems; Hersonissos, Greece; 2011. pp. 1-6.
  • [153] Shi W, Xie X, Chu C, Gadh R. Distributed optimal energy management in microgrids. IEEE Transactions on Smart Grid 2015; 6 (3): 1137-1146. doi: 10.1109/TSG.2014.2373150
  • [154] López MA, Martín S, Aguado JA, De La Torre S. Optimal microgrid operation with electric vehicles. In: 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies; Manchester, UK; 2011. pp. 1-8.
  • [155] Farzin H, Ghorani R, Fotuhi-Firuzabad M, Moeini-Aghtaie M. A market mechanism to quantify emergency energy transactions value in a multi-microgrid system. IEEE Transactions on Sustainable Energy 2019; 10 (1): 426-437. doi: 10.1109/TSTE.2017.2741427
  • [156] Dehghanpour K, Nehrir H. An agent-based hierarchical bargaining framework for power management of multiple cooperative microgrids. IEEE Transactions on Smart Grid 2019; 10 (1): 514-522. doi: 10.1109/TSG.2017.2746014
  • [157] Utkarsh K, Srinivasan D, Trivedi A, Zhang W, Reindl T. Distributed model-predictive real-time optimal operation of a network of smart microgrids. IEEE Transactions on Smart Grid 2019; 10 (3): 2833-2845. doi: 10.1109/TSG.2018.2810897
  • [158] Esfahani MM, Hariri A, Mohammed OA. A multiagent-based game-theoretic and optimization approach for market operation of multimicrogrid systems. IEEE Transactions on Industrial Informatics 2019; 15 (1): 280-292. doi: 10.1109/TII.2018.2808183
  • [159] Liu Y, Li Y, Gooi HB, Jian Y, Xin H, Jiang X, et al. Distributed robust energy management of a multimicrogrid system in the real-time energy market. IEEE Transactions on Sustainable Energy 2019; 10 (1): 396-406. doi: 10.1109/TSTE.2017.2779827
  • [160] He X, Yu J, Huang T, Li C. Distributed power management for dynamic economic dispatch in the multimicrogrids environment. IEEE Transactions on Control Systems Technology 2019; 27 (4): 1651-1658. doi: 10.1109/TCST.2018.2816902
  • [161] Babazadeh M, Nobakhti A. Robust decomposition and structured control of an islanded multi-dg microgrid. IEEE Transactions on Smart Grid 2019; 10 (3): 2463-2474. doi: 10.1109/TSG.2018.2798617
  • [162] Zhang W, Xu Y. Distributed optimal control for multiple microgrids in a distribution network. IEEE Transactions on Smart Grid 2019; 10 (4): 3765-3779. doi: 10.1109/TSG.2018.2834921
  • [163] Zhao Z, Yang P, Wang Y, Xu Z, Guerrero JM. Dynamic characteristics analysis and stabilization of pv-based multiple microgrid clusters. IEEE Transactions on Smart Grid 2019; 10 (1): 805-818. doi: 10.1109/TSG.2017.2752640
  • [164] Schneider KP, Radhakrishnan N, Tang Y, Tuffner FK, Liu C et al. Improving primary frequency response to support networked microgrid operations. IEEE Transactions on Power Systems 2019; 34 (1): 659-667. doi: 10.1109/TPWRS.2018.2859742
  • [165] Ahmad J, Tahir M, Mazumder SK. Improved dynamic performance and hierarchical energy management of microgrids with energy routing. IEEE Transactions on Industrial Informatics 2019; 15 (6): 3218-3229. doi: 10.1109/TII.2018.2877739
  • [166] Haddadian H, Noroozian R. Multi-microgrid-based operation of active distribution networks considering demand response programs. IEEE Transactions on Sustainable Energy 2019; 10 (4): 1804-1812. doi: 10.1109/TSTE.2018.2873206
  • [167] Xu D, Zhou B, Chan KW, Li C, Wu Q et al. Distributed multienergy coordination of multimicrogrids with biogas-solar-wind renewables. IEEE Transactions on Industrial Informatics 2019; 15 (6): 3254-3266. doi: 10.1109/TII.2018.2877143
  • [168] Hashempour MM, Lee T, Savaghebi M, Guerrero JM. Real-time supervisory control for power quality improvement of multi-area microgrids. IEEE Systems Journal 2019; 13 (1): 864-874. doi: 10.1109/JSYST.2018.2823899
  • [169] Shuai Z, Peng Y, Liu X, Li Z, Guerrero JM, Shen ZJ. Dynamic equivalent modeling for multi-microgrid based on structure preservation method. IEEE Transactions on Smart Grid 2019; 10 (4): 3929-3942. doi: 10.1109/TSG.2018.2844107
  • [170] Cheng Y, Wang J, Zhu F, Ding Z. Emission-aware microgrid cluster energy management scheme: a distributed trading approach. In: 2019 IEEE Industry Applications Society Annual Meeting; Baltimore, MD, USA; 2019. pp. 1-9.
  • [171] Du Y, Li F. Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning. IEEE Transactions on Smart Grid 2020; 11 (2): 1066-1076. doi: 10.1109/TSG.2019.2930299
  • [172] Dabbaghjamanesh M, Wang B, Mehraeen S, Zhang J, Kavousi-Fard A. Networked microgrid security and privacy enhancement by the blockchain-enabled internet of things approach. In: 2019 IEEE Green Technologies Conference (GreenTech); Lafayette, LA, USA; 2019. pp. 1-5.
  • [173] Zhou L, Wu X, Xu Z, Fujita H. Emergency decision making for natural disasters: An overview. International Journal of Disaster Risk Reduction 2018; 27: 567-576. doi: 10.1016/j.ijdrr.2017.09.037
  • [174] Wu L, Ortmeyer T, Li J. The community microgrid distribution system of the future. The Electricity Journal 2016; 29 (10): 16-21. doi: 10.1016/j.tej.2016.11.008
  • [175] Davis G, Snyder AF, Mader J. The future of distribution system resiliency. In: 2014 Clemson University Power Systems Conference; Clemson, SC, USA; 2014. pp. 1-8.
  • [176] Schneider KP, Tuffner FK, Elizondo MA, Liu C, Xu Y et al. Evaluating the feasibility to use microgrids as a resiliency resource. IEEE Transactions on Smart Grid 2017; 8 (2): 687-696. doi: 10.1109/TSG.2015.2494867
  • [177] Xu Y, Liu C, Schneider KP, Ton DT. Toward a resilient distribution system. In: 2015 IEEE Power Energy Society General Meeting; Denver, CO, USA; 2015. pp. 1-5.
  • [178] Abdubannaev J, YingYun S, Xin A, Makhamadjanova N, Rakhimov S. Investigate networked microgrids to enhance distribution network system resilience. In: 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia); Weihai, China; 2020. pp. 310-315.
  • [179] Wang Y, Chen C, Wang J, Baldick R. Research on resilience of power systems under natural disasters—A review. IEEE Transactions on Power Systems 2016; 31 (2): 1604-1613. doi: 10.1109/TPWRS.2015.2429656 [180] Wang Z, Wang J. Self-healing resilient distribution systems based on sectionalization into microgrids. IEEE Transactions on Power Systems 2015; 30 (6): 3139-3149. doi: 10.1109/TPWRS.2015.2389753
  • [181] Poudel S, Dubey A. Critical load restoration using distributed energy resources for resilient power distribution system. IEEE Transactions on Power Systems 2019; 34 (1): 52-63. doi: 10.1109/TPWRS.2018.2860256
  • [182] Sedzro KSA, Lamadrid AJ, Zuluaga LF. Allocation of resources using a microgrid formation approach for resilient electric grids. IEEE Transactions on Power Systems 2018; 33 (3): 2633-2643. doi: 10.1109/TPWRS.2017.2746622
  • [183] Choobineh M, Mohagheghi S. Emergency electric service restoration in the aftermath of a natural disaster. In: 2015 IEEE Global Humanitarian Technology Conference (GHTC); Seattle, WA, USA; 2015. pp. 183-190.
  • [184] Khederzadeh M, Zandi S. Enhancement of distribution system restoration capability in single/multiple faults by using microgrids as a resiliency resource. IEEE Systems Journal 2019; 13 (2): 1796-1803. doi: 10.1109/JSYST.2019.2890898
  • [185] Yuan C, Illindala MS, Khalsa AS. Modified viterbi algorithm based distribution system restoration strategy for grid resiliency. IEEE Transactions on Power Delivery 2017; 32 (1): 310-319. doi: 10.1109/TPWRD.2016.2613935
  • [186] Borghei M, Ghassemi M, Liu C. Optimal capacity and placement of microgrids for resiliency enhancement of distribution networks under extreme weather events. In: 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT); Washington, DC, USA; 2020. pp. 1-5.
  • [187] Li J, Ma X, Liu C, Schneider KP. Distribution system restoration with microgrids using spanning tree search. IEEE Transactions on Power Systems 2014; 29 (6): 3021-3029. doi: 10.1109/TPWRS.2014.2312424
  • [188] Gao H, Chen Y, Xu Y, Liu C. Resilience-oriented critical load restoration using microgrids in distribution systems. IEEE Transactions on Smart Grid 2016; 7 (6): 2837-2848. doi: 10.1109/TSG.2016.2550625
  • [189] Zhu J, Gu W, Jiang P, Song S, Liu H et al. Dynamic island partition for distribution system with renewable energy to decrease customer interruption cost. Journal of Electrical Engineering and Technology 2017; 12 (6): 2146-2156. doi: 10.5370/JEET.2017.12.6.2146
  • [190] Bajpai P, Chanda S, Srivastava AK. A novel metric to quantify and enable resilient distribution system using graph theory and choquet integral. IEEE Transactions on Smart Grid 2018; 9 (4): 2918-2929. doi: 10.1109/TSG.2016.2623818
  • [191] Anuranj NJ, Mathew RK, Ashok S, Kumaravel S. Resiliency based power restoration in distribution systems using microgrids. In: 2016 IEEE 6th International Conference on Power Systems (ICPS); New Delhi, India; 2016. pp. 1-5.
  • [192] Eskandarpour R, Lotfi H, Khodaei A. Optimal microgrid placement for enhancing power system resilience in response to weather events. In: 2016 North American Power Symposium (NAPS); Denver, CO, USA; 2016. pp. 1-6.
  • [193] Zhu J, Yuan Y, Wang W. An exact microgrid formation model for load restoration in resilient distribution system. International Journal of Electrical Power & Energy Systems 2020; 116: 105568. doi: 10.1016/j.ijepes.2019.105568
APA Erenoğlu A, SANCAR S, Erdinc O, Bagriyanik M (2021). A topological overview of microgrids: from maturity to the future . , 1308 - 1353. 10.3906/elk-2012-80
Chicago Erenoğlu Ayşe Kübra,SANCAR SEMANUR,Erdinc Ozan,Bagriyanik Mustafa A topological overview of microgrids: from maturity to the future . (2021): 1308 - 1353. 10.3906/elk-2012-80
MLA Erenoğlu Ayşe Kübra,SANCAR SEMANUR,Erdinc Ozan,Bagriyanik Mustafa A topological overview of microgrids: from maturity to the future . , 2021, ss.1308 - 1353. 10.3906/elk-2012-80
AMA Erenoğlu A,SANCAR S,Erdinc O,Bagriyanik M A topological overview of microgrids: from maturity to the future . . 2021; 1308 - 1353. 10.3906/elk-2012-80
Vancouver Erenoğlu A,SANCAR S,Erdinc O,Bagriyanik M A topological overview of microgrids: from maturity to the future . . 2021; 1308 - 1353. 10.3906/elk-2012-80
IEEE Erenoğlu A,SANCAR S,Erdinc O,Bagriyanik M "A topological overview of microgrids: from maturity to the future ." , ss.1308 - 1353, 2021. 10.3906/elk-2012-80
ISNAD Erenoğlu, Ayşe Kübra vd. "A topological overview of microgrids: from maturity to the future ". (2021), 1308-1353. https://doi.org/10.3906/elk-2012-80
APA Erenoğlu A, SANCAR S, Erdinc O, Bagriyanik M (2021). A topological overview of microgrids: from maturity to the future . Turkish Journal of Electrical Engineering and Computer Sciences, 29(3), 1308 - 1353. 10.3906/elk-2012-80
Chicago Erenoğlu Ayşe Kübra,SANCAR SEMANUR,Erdinc Ozan,Bagriyanik Mustafa A topological overview of microgrids: from maturity to the future . Turkish Journal of Electrical Engineering and Computer Sciences 29, no.3 (2021): 1308 - 1353. 10.3906/elk-2012-80
MLA Erenoğlu Ayşe Kübra,SANCAR SEMANUR,Erdinc Ozan,Bagriyanik Mustafa A topological overview of microgrids: from maturity to the future . Turkish Journal of Electrical Engineering and Computer Sciences, vol.29, no.3, 2021, ss.1308 - 1353. 10.3906/elk-2012-80
AMA Erenoğlu A,SANCAR S,Erdinc O,Bagriyanik M A topological overview of microgrids: from maturity to the future . Turkish Journal of Electrical Engineering and Computer Sciences. 2021; 29(3): 1308 - 1353. 10.3906/elk-2012-80
Vancouver Erenoğlu A,SANCAR S,Erdinc O,Bagriyanik M A topological overview of microgrids: from maturity to the future . Turkish Journal of Electrical Engineering and Computer Sciences. 2021; 29(3): 1308 - 1353. 10.3906/elk-2012-80
IEEE Erenoğlu A,SANCAR S,Erdinc O,Bagriyanik M "A topological overview of microgrids: from maturity to the future ." Turkish Journal of Electrical Engineering and Computer Sciences, 29, ss.1308 - 1353, 2021. 10.3906/elk-2012-80
ISNAD Erenoğlu, Ayşe Kübra vd. "A topological overview of microgrids: from maturity to the future ". Turkish Journal of Electrical Engineering and Computer Sciences 29/3 (2021), 1308-1353. https://doi.org/10.3906/elk-2012-80