Yıl: 2022 Cilt: 47 Sayı: 2 Sayfa Aralığı: 783 - 791 Metin Dili: İngilizce DOI: 10.17826/cumj.1093970 İndeks Tarihi: 29-07-2022

Otoprotective effects of farnesene against oxidative damage induced by paclitaxel

Öz:
Purpose: This study explores the biochemical and functional effects of farnesene, which has potent free radical scavenging and antioxidant properties, on paclitaxel-induced ototoxicity. Materials and Methods: Eighteen male Wistar albino rats were allocated into three groups of six rats at random. No paclitaxel or farnesene was given to the control group throughout the research. Paclitaxel was given four times intraperitoneally at a dose of 5 mg/kg (1st, 7th, 14th & 21st days) in the paclitaxel group. In the Farnesene + Paclitaxel group, 5 mg/kg paclitaxel was given first, followed by 4 times 50 mg/kg farnesene intraperitoneally 30 minutes later (1st, 7th, 14th & 21st days). Otoacoustic emission measurement was taken on days 0 and 21 in all rats. After that, the animals were sacrificed, and their cochleas were extracted for biochemical testing. Results: Paclitaxel caused oxidative stress in the cochlea, which considerably elevated malondialdehyde levels and lowered glutathione levels in cochlear tissues. Furthermore, the paclitaxel group’s distortion product otoacoustic emission values were significantly lower than the other groups. Improvements in the damage produced by paclitaxel in various biochemical and functional parameters were observed in the Farnesene+Paclitaxel group. Conclusion: The study findings imply that farnesene, a natural antioxidant, reduced paclitaxel-induced hearing loss in rats, and a combination of farnesene and paclitaxel therapy may have protected from paclitaxel-induced ototoxicity for future clinical use.
Anahtar Kelime: Ototoxicity Otoacoustic emission Antioxidants Farnesene Ototoxicity; Paclitaxel

Paklitakselin neden olduğu oksidatif hasara karşı farnesenin otoprotektif etkileri

Öz:
Amaç: Bu çalışmanın amacı, güçlü serbest radikal süpürücü ve antioksidan özelliklere sahip farnesenin paklitaksel kaynaklı ototoksisite üzerindeki etkilerini biyokimyasal ve fonksiyonel yönden araştırmaktır. Gereç ve Yöntem: On sekiz erkek Wistar albino sıçan, altı sıçandan oluşan üç gruba rastgele ayrıldı. Araştırma boyunca kontrol grubuna paklitaksel veya farnesen verilmedi. Paklitaksel grubuna, 5mg/kg paklitaksel intraperitoneal olarak dört kez (1., 7., 14. ve 21. günlerde) verildi. Farnesen + paklitaksel grubuna, önce 5 mg/kg paklitaksel, 30 dakika sonra 50 mg/kg farnesen intraperitoneal olarak 4 kez (1., 7., 14. ve 21. günlerde) verildi. 0. ve 21. günlerde tüm sıçanların otoakustik emisyon ölçümü yapıldı. Daha sonra hayvanlar sakrifiye edildi ve biyokimyasal testler için kokleaları çıkarıldı. Bulgular: Paklitaksel, önemli ölçüde malondialdehit seviyelerini yükselterek ve glutatyon seviyelerini düşürerek kokleada oksidatif strese neden oldu. Ayrıca paklitaksel grubunun distorsiyon ürünü otoakustik emisyon değerleri diğer gruplara göre anlamlı derecede düşüktü. Farnesen+paklitaksel grubunda ise paklitakselin çeşitli biyokimyasal ve fonksiyonel parametrelerde oluşturduğu hasarda iyileşmeler gözlendi. Sonuç: Çalışma sonuçları doğal bir antioksidan olan farnesen’in sıçanlarda paklitaksel kaynaklı işitme kaybını azalttığını, farnesen ve paklitaksel kombinasyonunun gelecekte klinik kullanım için paklitaksel kaynaklı ototoksisiteden koruyabileceğini göstermektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Lanvers‐Kaminsky C, Zehnhoff‐Dinnesen AM, Parfitt R, Ciarimboli G. Drug‐induced ototoxicity: Mechanisms, pharmacogenetics, and protective strategies. Clin Pharmacol Ther. 2017;101:491-500.
  • 2. Paken J, Govender CD, Pillay M, Sewram V. Cisplatin-associated ototoxicity: a review for the health professional. J Toxicol. 2016;2016:1809394.
  • 3. Knight KRG, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23:8588-96.
  • 4. Bicaku E, Xiong Y, Marchion DC, Chon HS, Stickles XB, Chen N et al. In vitro analysis of ovarian cancer response to cisplatin, carboplatin, and paclitaxel identifies common pathways that are also associated with overall patient survival. Br J Cancer. 2012;106:1967-75.
  • 5. Bachegowda LS, Makower DF, Sparano JA. Taxanes: Impact on breast cancer therapy. Anticancer Drugs. 2014;25:512-21.
  • 6. Sakai H, Yoneda S, Tamura T, Nishiwaki Y, Yokoyama A, Watanabe K et al. A phase II study of paclitaxel plus cisplatin for advanced non-small-cell lung cancer in Japanese patients. Cancer Chemother Pharmacol. 2001;48:499-503.
  • 7. Misiukiewicz K, Gupta V, Bakst R,Posner M. Taxanes in cancer of the head and neck. Anticancer Drugs. 2014;25:561-70.
  • 8. Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677-81.
  • 9. Park SB, Lin CSY, Krishnan AV, Friedlander ML, Lewis CR, Kiernan MC. Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxel‐induced neuropathy. Muscle Nerve. 2011;43:367-74.
  • 10. Pace A, Nisticò C, Cuppone F, Bria E, Galiè E, Graziano G et al. Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clin Breast Cancer. 2007;7:550-4.
  • 11. Dong Y, Ding D, Jiang H, Shi J-r, Salvi R, Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicol Appl Pharmacol. 2014;280:526-33.
  • 12. Sarafraz M, Ahmadi K. Paraclinical evaluation of sideeffects of Taxanes on the auditory system. Acta Otorhinolaryngol Ital. 2008;28:239-42.
  • 13. Tibaldi C, Pazzagli I, Berrettini S,De Vito A. A case of ototoxicity in a patient with metastatic carcinoma of the breast treated with paclitaxel and vinorelbine. Eur J Cancer. 1998;34:1133-4.
  • 14. Bucak A, Ozdemir C, Ulu S, Gonul Y, Aycicek A, Uysal M et al. Investigation of protective role of curcumin against paclitaxel‐induced inner ear damage in rats. Laryngoscope. 2015;125:1175-82.
  • 15. Atalay F, Tatar A, Dincer B, Gündoğdu B, Köyceğiz S. Protective effect of carvacrol against paclitaxelinduced ototoxicity in rat model. Turk Arch Otorhinolaryngol. 2020; 58:241-8.
  • 16. Lee CH, Lee SM, Kim SY. Telmisartan attenuates kanamycin-induced ototoxicity in rats. Int J Mol Sci. 2021;22:1-10.
  • 17. Kilic K, Sakat MS, Akdemir FNE, Yildirim S, Saglam YS, Askin S. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. Braz J Otorhinolaryngol. 2019;85:267-74.
  • 18. Sakat MS, Kilic K, Akdemir FNE, Yildirim S, Eser G, Kiziltunc A. The effectiveness of eugenol against cisplatin-induced ototoxicity. Braz J Otorhinolaryngol. 2019;85:766-73.
  • 19. Casares C, Ramírez-Camacho R, Trinidad A, Roldán A, Jorge E,García-Berrocal JR. Reactive oxygen species in apoptosis induced by cisplatin: Review of physiopathological mechanisms in animal models. Eur Arch Otorhinolaryngol. 2012;269:2455-9.
  • 20. Rybak LP. Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg. 2007;15:364-9.
  • 21. Bernardes ACFPF, Matosinhos RC, Araújo MCdPM, Barros CH, Soares RDdOA, Costa DC et al. Sesquiterpene lactones from Lychnophora species: Antinociceptive, anti-inflammatory, and antioxidant pathways to treat acute gout. J Ethnopharmacol. 2021;269:113738.
  • 22. Liu X, Bian L, Duan X, Zhuang X, Sui Y, Yang L. Alantolactone: A sesquiterpene lactone with diverse pharmacological effects. Chem Biol Drug Des. 2021;98:1131-45.
  • 23. Gach K, Długosz A,Janecka A. The role of oxidative stress in anti-cancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:477-86.
  • 24. Arslan ME, Türkez H,Mardinoğlu A. In vitro neuroprotective effects of farnesene sesquiterpene on Alzheimer’s disease model of differentiated neuroblastoma cell line. Int J Neurosci. 2021;131:745- 54.
  • 25. Turkez H, Sozio P, Geyikoglu F, Tatar A, Hacimuftuoglu A, Di Stefano A. Neuroprotective effects of farnesene against hydrogen peroxideinduced neurotoxicity in vitro. Cell Mol Neurobiol. 2014;34:101-11.
  • 26. Sarikurkcu C, Sabih Ozer M, Cakir A, Eskici M, Mete E. GC/MS evaluation and in vitro antioxidant activity of essential oil and solvent extracts of an endemic plant used as folk remedy in Turkey: Phlomis bourgaei Boiss. Evid Based Complement Alternat Med. 2013;2013:1-7.
  • 27. Chehregani A, Mohsenzadeh F, Mirazi N, Hajisadeghian S, Baghali Z. Chemical composition and antibacterial activity of essential oils of Tripleurospermum disciforme in three developmental stages. Pharm Biol 2010;48:1280-4.
  • 28. Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F et al. Chemical composition and anti-cancer, anti-inflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chem Toxicol. 2013;56:352- 62.
  • 29. Güler I, Kuzucu I, Baklacı D, Kum RO, Uçaryılmaz EO, Ozcan M. Evaluation of nivolumab for ototoxic effects: An animal study in rats. J Int Adv Otol. 2020;16:218-21.
  • 30. Kuduban O, Kucur C, Sener E, Suleyman H, Akcay F. The role of thiamine pyrophosphate in prevention of cisplatin ototoxicity in an animal model. Scientific WorldJournal. 2013;2013:182694
  • 31. Bekmez Bilmez ZE, Aydin S, Şanli A, Altintoprak N, Demir MG, Atalay EB et al. Oxytocin as a protective agent in cisplatin-induced ototoxicity. Cancer Chemother Pharmacol. 2016;77:875-9.
  • 32. Khan R, Sultana S. Farnesol attenuates 1, 2- dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem Biol Interact. 2011;192:193-200.
  • 33. Apaydın E, Dağlı E, Bayrak S, Kankılıç ES, Şahin H, Acar A. Protective effect of creatine on amikacininduced ototoxicity. Braz J Otorhinolaryngol. 2020;2020:1-7.
  • 34. Sedlak J, Lindsay RH. Estimation of total, proteinbound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192- 205.
  • 35. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351-8.
  • 36. Lee CH, Lee D-h, Lee SM, Kim SY. Otoprotective effects of zingerone on cisplatin-induced ototoxicity. Int J Mol Sci. 2020;21:1-11.
  • 37. Fernandez K, Spielbauer KK, Rusheen A, Wang L, Baker TG, Eyles S et al. Lovastatin protects against cisplatin-induced hearing loss in mice. Hear Res. 2020;389:1-22.
  • 38. Yang HY, Mao JW, Tan XL. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med. 2020;18:890-7.
  • 39. Yayla M, Harun Ü, Binnetoğlu D. Neuroprotective effects of phloretin and phloridzin on paclitaxelinduced neuronal damage in primary neuron cells. Çukurova Med J. 2021;46:632-9.
  • 40. Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D’Incalci M et al. Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology. 2000;21:389-93.
  • 41. Abdala C, Visser-Dumont L. Distortion product otoacoustic emissions: A tool for hearing assessment and scientific study. Volta Rev. 2001;103:281-302.
  • 42. Deavall DG, Martin EA, Horner JM, Roberts R. Drug-induced oxidative stress and toxicity. J Toxicol. 2012;2012:1-13.
  • 43. Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:1-12.
  • 44. Ravi R, Somani SM, Rybak LP. Mechanism of cisplatin ototoxicity: antioxidant system. J Pharmacol Toxicol.1995;76:386-94.
  • 45. Kökten N, Eğilmez OK, Erinç M, Ekici AID, Şerifler S, Yeşilada E et al. The protective effect of nigella sativa oil against experimentally induced cisplatin ototoxicity: An animal study. J Int Adv Otol. 2020;16:346-52.
  • 46. Eryilmaz A, Eliyatkin N, Demirci B, Basal Y, Kurt Omurlu I, Gunel C et al. Protective effect of Pycnogenol on cisplatin-induced ototoxicity in rats. Pharm Biol. 2016;54:2777-81.
  • 47. Yazici ZM, Meric A, Midi A, Arınc YV, Kahya V, Hafız G. Reduction of cisplatin ototoxicity in rats by oral administration of pomegranate extract. Eur Arch Otorhinolaryngol. 2012;269:45-52.
  • 48. Şimşek G, Tokgoz SA, Vuralkan E, Caliskan M, Besalti O, Akin I. Protective effects of resveratrol on cisplatin-dependent inner-ear damage in rats. Eur Arch Otorhinolaryngol. 2013;270:1789-93.
  • 49. Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013;14:12780-5.
  • 50. Al-Maskri AY, Hanif MA, Al-Maskari MY, Abraham AS, Al-sabahi JN, Al-Mantheri O. Essential oil from Ocimum basilicum (Omani Basil): A desert crop. Nat Prod Commun. 2011;6:1487-90.
APA Dincer B, ATALAY F, Tatar A (2022). Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. , 783 - 791. 10.17826/cumj.1093970
Chicago Dincer Busra,ATALAY Fatma,Tatar Arzu Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. (2022): 783 - 791. 10.17826/cumj.1093970
MLA Dincer Busra,ATALAY Fatma,Tatar Arzu Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. , 2022, ss.783 - 791. 10.17826/cumj.1093970
AMA Dincer B,ATALAY F,Tatar A Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. . 2022; 783 - 791. 10.17826/cumj.1093970
Vancouver Dincer B,ATALAY F,Tatar A Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. . 2022; 783 - 791. 10.17826/cumj.1093970
IEEE Dincer B,ATALAY F,Tatar A "Otoprotective effects of farnesene against oxidative damage induced by paclitaxel." , ss.783 - 791, 2022. 10.17826/cumj.1093970
ISNAD Dincer, Busra vd. "Otoprotective effects of farnesene against oxidative damage induced by paclitaxel". (2022), 783-791. https://doi.org/10.17826/cumj.1093970
APA Dincer B, ATALAY F, Tatar A (2022). Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. Cukurova Medical Journal, 47(2), 783 - 791. 10.17826/cumj.1093970
Chicago Dincer Busra,ATALAY Fatma,Tatar Arzu Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. Cukurova Medical Journal 47, no.2 (2022): 783 - 791. 10.17826/cumj.1093970
MLA Dincer Busra,ATALAY Fatma,Tatar Arzu Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. Cukurova Medical Journal, vol.47, no.2, 2022, ss.783 - 791. 10.17826/cumj.1093970
AMA Dincer B,ATALAY F,Tatar A Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. Cukurova Medical Journal. 2022; 47(2): 783 - 791. 10.17826/cumj.1093970
Vancouver Dincer B,ATALAY F,Tatar A Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. Cukurova Medical Journal. 2022; 47(2): 783 - 791. 10.17826/cumj.1093970
IEEE Dincer B,ATALAY F,Tatar A "Otoprotective effects of farnesene against oxidative damage induced by paclitaxel." Cukurova Medical Journal, 47, ss.783 - 791, 2022. 10.17826/cumj.1093970
ISNAD Dincer, Busra vd. "Otoprotective effects of farnesene against oxidative damage induced by paclitaxel". Cukurova Medical Journal 47/2 (2022), 783-791. https://doi.org/10.17826/cumj.1093970