Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi

Yıl: 2022 Cilt: 28 Sayı: 2 Sayfa Aralığı: 222 - 223 Metin Dili: Türkçe DOI: 10.5505/pajes.2021.85550 İndeks Tarihi: 25-06-2022

Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi

Öz:
Elektrikli araçlar, son yıllarda, fosil yakıt kaynaklarındaki azalma, fosil yakıt fiyatlarındaki dalgalanmalar, batarya teknolojileri ve enerji yönetim sistemlerindeki gelişmelerle birlikte ön plana çıkmıştır. Bugün dünyanın birçok gelişmiş ülkesinde, gerek elektrikli araç üretimleri, gerekse bu araçların enerji ihtiyacının karşılanmasına yönelik şarj istasyonlarının üretimine ve kurulumuna yönelik çalışmalar yapılmaktadır. Elektrikli araç şarj istasyonlarının kurulumu ile birlikte, bu tür sistemlerin entegre edildiği elektrik tesisatı üzerindeki etkileri de önem arz etmeye başlamıştır. Elektrikli araç şarj istasyonlarının mevcut elektrik tesisatlarına entegrasyonu ile birlikte, ilgili tesisatlar üzerinde; gerilim düşümünün, kabloların akım taşıma kapasitelerinin, şalt ekipmanlarının kısa devre kesme kapasitelerinin, seçiciliğin ve benzeri elektriksel unsurların yeniden ele alınması ihtiyacı doğmaktadır. Yapılan bu çalışmada, bir tesise elektrikli araç şarj istasyonu entegre edilmesi halinde ortaya çıkabilecek elektrik tesisatı revizyon ihtiyaçları, Simaris ortamında yapılan benzetim sonuçları ile birlikte incelenmiştir. İnceleme, elektrikli araç şarj istasyonu entegre edilen mevcut bir tesiste ortaya çıkabilecek şalt ekipmanı ve kablolama revizyon ihtiyaçları üzerine yoğunlaşmıştır. Bu bağlamda; gerilim düşümü, akım taşıma kapasitesi, şalt ekipmanı değişimi, kısa devre akımı ve seçicilik kavramları üzerinde durulmuştur. Neticede; elektrikli araç şarj istasyonu entegre edilen bir tesiste, sağlıklı ve güvenli işletme koşullarının sağlanabilmesi için, elektriksel ekipman değişimi yoluna gidilmesinin gerekliliği, benzetim sonuçları ile birlikte ortaya koyulmuştur.
Anahtar Kelime:

Investigation of the revision requirement of an existing electrical installation integrated with electric vehicle charging station in Simaris

Öz:
In recent years, electric vehicles have come to the forefront with decreases in fossil fuel sources, fluctuations in fossil fuel prices, and advances in battery technologies and energy management systems. Today, in many developed countries of the world, both the production of electric vehicles and the production and installation of charging stations to meet the energy needs of these vehicles are being carried out. Along with the installation of electric vehicle charging stations, their impact on the electrical installation in which such systems are integrated has also become important. With the integration of electric vehicle charging stations into the existing electrical installations, on the related installations; The need arises to reconsider voltage drop, current carrying capacity of cables, short-circuit breaking capacity of switchgear equipment, selectivity, and similar electrical phenomenon. In this study, the revision needs of the electrical installation that can be realized in case of the integration of electric vehicle charging station to a sample installation are examined together with the simulation results in Simaris. The review focused on the switchgear equipment and wiring revision needs that may arise in an existing installation with an electric vehicle charging station integrated. In this context; voltage drop, current carrying capacity, switchgear change, short-circuit current, and selectivity concepts are emphasized. Finally; together with the simulation results, the necessity of changing electrical equipment in an installation where the electric vehicle charging station is integrated, in order to ensure healthy and safe operating conditions, is revealed
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Düzeltme Erişim Türü: Erişime Açık
  • 1] Krane J. “Climate Risk and The Fossil Fuel Industry: Two Feet High and Rising”. Rice University’s Baker Institute for Public Policy, Working Paper, 19, 2016.
  • [2] Wang H, Zhou W, Qian K, Meng S. “Modelling of ampacity and temperature of MV cables in presence of harmonic currents due to EVs charging in electrical distribution networks”. Electrical Power and Energy Systems, 112, 127-136, 2019.
  • [3] Sujitha N, Krithiga S. “RES based EV battery charging system: A review”. Renewable and Sustainable Energy Reviews, 75, 978-988, 2017.
  • [4] Du J, Ouyang D. “Progress of Chinese electric vehicles industrialization in 2015: A review”. Applied Energy, 188, 529-546, 2017.
  • [5] Palmer K, Tate JE, Wadud Z, Nellthorp J. “Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan”. Applied Energy, 209, 108-119, 2018.
  • [6] Rominger J, Farkas C. “Public charging infrastructure in Japan - A stochastic modelling analysis”. Electrical Power and Energy Systems, 90, 134-146, 2017.
  • [7] Hall D, Lutsey N. “Effects of Battery Manufacturing on Electric Vehicle Life-Cycle Greenhouse Gas Emissions”. The International Council on Clean Transportation, Briefing, 12, 2018.
  • [8] Gil-Aguirre J, Perez-Londoño S, Mora-Flórez J. “A measurement-based load modelling methodology for electric vehicle fast-charging stations”. Electric Power Systems Research, 176(105934), 1-9, 2019.
  • [9] Lee Y, Hur J. “A simultaneous approach implementing wind-powered electric vehicle charging stations for charging demand dispersion”. Renewable Energy, 144, 172-179, 2019.
  • [10] Limmer S, Rodemann T. “Peak load reduction through dynamic pricing for electric vehicle charging”. Electrical Power and Energy Systems, 113, 117-128, 2019.
  • [11] Das HS, Rahman MM, Li S, Tan CW. “Electric vehicles, standards, charging infrastructure, and impact on grid integration: A technological review”. Renewable and Sustainable Energy Reviews, 120, 1-27, 2020.
  • [12] Nour M, Chaves-Avila JP, Magdy G, Sanchez-Miralles A. “Review of positive and negative impacts of electric vehicles charging on electric power systems”. Energies, 13(4675), 1-34, 2020.
  • [13] Habib S, Khan MM, Abbas F, Sang L, Shahid MU, Tang AH. “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles”. IEEE Access, 6, 13866-13890, 2018.
  • [14] Gomez JC, Morcos MM. “Impact of ev battery charges on the power quality of distribution systems”. IEEE Transactions on Power Delivery, 18(3), 975-981, 2002.
  • [15] Akhavan-Rezai E, Shaaban MF, El-Saadany EF, Zidan A. “Uncoordinated charging impacts of electric vehicles on electric distribution grids: normal and fast charging comparison”. 2012 IEEE Power and Energy Society General Meeting, San Diego, USA, 22-26 July 2012.
  • [16] Ventoruzzo G, Davigny A, Henneton A, Gouraud S, Robyns B. “Integration and safety of electric vehicles in a residential electrical installation for V2H services”. 2016 18th European Conference on Power Electronics and Applications EPE’16 ECCE Europe, Karlsruhe, Germany, 5-9 September 2016.
  • [17] EMSD Hong Kong Electrical and Mechanical Services Department. “Technical Guidelines on Charging Facilities for Electric Vehicles”. Hong Kong, 16, 2015.
  • [18] TCI Transportation and Climate Initiative. “Siting and Design Guidelines for Electric Vehicle Supply Equipment”. USA, 34, 2012.
  • [19] Electrical Contractors Association of New Zealand. “EV Charging: Domestic Installation Guide”. New Zealand, 16, 2019.
  • [20] NICEIC National Inspection Council for Electrical Installation Contracting. “Electrical Vehicle Charging”. UK, 12, 2019.
  • [21] TEHAD. “Türkiye Elektrikli ve Hibrit Araçlar Derneği”. http://tehad.org/2019/03/25/turkiyedeki-sarj- istasyonu-sayisi-elektrikli-otomobili-yakaladi/ (07.02.2021).
  • [22] Siemens. “Technical Series Edition 9; Electrical Infrastructure for E-car Charging Stations”. Germany, 21, 2013.
  • [23] Siemens. “5TT3 201 Charging Unit for Electric Vehicles Equipment Manual (2540024112-02)”. Germany, 6, 2012.
  • [24] Siemens. “Fast Charge Project/Ultra-Fast Charging Tech”. https://press.siemens.com/global/en/feature/research- project-fastcharge-ultra-fast-charging-technology (07.02.2021).
  • [25] IEC. “International Electrotechnical Commisison Web Store”. https://webstore.iec.ch (07.02.2021).
  • [26] Rubenis A, Laizans A, Zvirbule A. “Latvian electric vehicle fast charging infrastructure: results of the first year of operation”. Environmental and Climate Technologies, 23(2), 9-21, 2019.
  • [27] Tamor MA. “Examining the case for long-range battery electric vehicles with a generalized description of driving patterns”. Transportation Research Part C. 108, 1-11, 2019.
  • [28] Folkestad CA, Hansen N, Fagerholt K, Andersson H, Pantuso G. “Optimal charging and repositioning of electric vehicles in a free-floating carsharing system”. Computers and Operations Research. 113(104771), 1-18, 2020.
  • [29] Chen R, Qian X, Miao L, Ukkusuri SV. “Optimal charging facility location and capacity for electric vehicles considering route choice and charging time equilibrium”. Computers and Operations Research. 113(104776), 1-18, 2020.
  • [30] Pagani M, Korosec W, Chokani N, Abhari RS. “User behaviour and electric vehicle charging infrastructure: An agent-based model assessment”. Applied Energy. 254(113680), 1-11, 2019.
  • [31] Wenig J, Sodenkamp M, Staake T. “Battery versus infrastructure: tradeoffs between battery capacity and charging infrastructure for plug-in hybrid electric vehicles”. Applied Energy, 255(113787), 1-12, 2019.
  • [32] Sun B, Sun X, Tsang DHK, Whitt W. “Optimal battery purchasing and charging strategy at electric vehicle battery swap stations”. European Journal of Operational Research. 279, 524-539, 2019.
  • [33] Zuo X, Xiao Y, You M, Kaku I, Xu Y. “A new formulation of the electric vehicle routing problem with time windows considering concave nonlinear charging function”. Journal of Cleaner Production, 236(117687), 1-18, 2019.
  • [34] Roni MS, Yi Z, Smart JG. ”Optimal charging management and infrastructure planning for free-floating shared electric vehicles”. Transportation Research Part D, 76, 155-175, 2019
  • 35] Kong W, Luo Y, Feng G, Li K, Peng H. “Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid”. Energy. 186(115826), 1-13, 2019.
  • [36] Bautista PB, Cardenas LL, Aguiar LU, Igartua MA. “A traffic- aware electric vehicle charging management system for smart cities”. Vehicular Communications, 20(100188), 1-14, 2019.
  • [37] Siemens. “Totally Integrated Power, Simaris Design/Simaris Project Technical Manual”. Germany, 171, 2014.
  • [38] T.C. Resmi Gazete. “Elektrik İç Tesisleri Yönetmeliği”. Ankara, Türkiye, 96, 1984.
  • [39] Siemens. “5SV4646-0 RCCB Data Sheet”. Germany, 5, 2020.
  • [40] Siemens. “Sentron Residual Current Protective Devices, Answers for Infrastructure and Cities (E10003-E38-2B- G0090-7600)”. Germany, 74, 2012
APA ÇETİN E (2022). Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. , 222 - 223. 10.5505/pajes.2021.85550
Chicago ÇETİN Engin Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. (2022): 222 - 223. 10.5505/pajes.2021.85550
MLA ÇETİN Engin Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. , 2022, ss.222 - 223. 10.5505/pajes.2021.85550
AMA ÇETİN E Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. . 2022; 222 - 223. 10.5505/pajes.2021.85550
Vancouver ÇETİN E Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. . 2022; 222 - 223. 10.5505/pajes.2021.85550
IEEE ÇETİN E "Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi." , ss.222 - 223, 2022. 10.5505/pajes.2021.85550
ISNAD ÇETİN, Engin. "Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi". (2022), 222-223. https://doi.org/10.5505/pajes.2021.85550
APA ÇETİN E (2022). Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 222 - 223. 10.5505/pajes.2021.85550
Chicago ÇETİN Engin Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, no.2 (2022): 222 - 223. 10.5505/pajes.2021.85550
MLA ÇETİN Engin Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol.28, no.2, 2022, ss.222 - 223. 10.5505/pajes.2021.85550
AMA ÇETİN E Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 28(2): 222 - 223. 10.5505/pajes.2021.85550
Vancouver ÇETİN E Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 28(2): 222 - 223. 10.5505/pajes.2021.85550
IEEE ÇETİN E "Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi." Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28, ss.222 - 223, 2022. 10.5505/pajes.2021.85550
ISNAD ÇETİN, Engin. "Elektrikli araç şarj istasyonu entegre edilen mevcut bir elektrik tesisatındaki revizyon ihtiyacının Simaris ortamında incelenmesi". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/2 (2022), 222-223. https://doi.org/10.5505/pajes.2021.85550