Yıl: 2022 Cilt: 48 Sayı: 1 Sayfa Aralığı: 69 - 77 Metin Dili: İngilizce DOI: 10.5152/actavet.2022.21060 İndeks Tarihi: 26-06-2022

How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?

Öz:
Pandemic respiratory viruses of poultry have caused significant economic losses in the poultry industry since the 1930s, and molecular and genetic techniques are widely used for diagnosis and control of the infections. Knowledge of changes in the genetic and antigenic characteristics of the pandemic viruses during the time can be really important for human pandemic viruses such as severe acute respiratory syndrome virus-coronavirus-2 and human influenza virus. The use of these techniques plays a vital role in preventing the faulty results and the possible financial losses that may occur due to the limited findings obtained from conventional laboratory tests. In the light of this information, the purpose of this review is to provide an up-to-date assessment of the diagnosis and prevention of major respiratory viruses in poultry and a general and field-oriented scientific perspective that may be useful in the industry. In this context, current approaches for diagnosis and vaccination applications developed using molecular methods based on avian coronavirus infectious bronchitis virus, avian paramyxovirus-1 virus, and avian influenza virus, which are pandemic, are discussed, and solution suggestions for an effective fight are presented.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Afonso, C. L., Amarasinghe, G. K., Bányai, K., Báo, Y., Basler, C. F., Bavari, S., Bejerman, N., Blasdell, K. R., Briand, F. X., Briese, T., Bukreyev, A., Calisher, C. H., Chandran, K., Chéng, J., Clawson, A. N., Collins, P. L., Dietzgen, R. G., Dolnik, O., Domier, L. L., Dürrwald, R., et al. (2016). Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 161, 2351–2360.
  • Ahn, S. J., Baek, Y. H., Lloren, K. K. S., Choi, W. S., Jeong, J. H., Antigua, K. J. C., Kwon, H. I., Park, S. J., Kim, E. H., Kim, Y. I., Si, Y. J., Hong, S. B., Shin, K. S., Chun, S., Choi, Y. K., & Song, M. S. (2019). Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. BMC Infectious Diseases, 19(1), 676. [CrossRef]
  • Alexander, D. J. (2007). An overview of the epidemiology of avian influenza. Vaccine, 25(30), 5637–5644. [CrossRef]
  • Arnold, M. E., Slomka, M. J., Breed, A. C., Hjulsager, C. K., Pritz-Verschuren, S., Venema-Kemper, S., Bouwstra, R. J., Trebbien, R., Zohari, S., Ceeraz, V., Larsen, L. E., Manvell, R. J., Koch, G., & Brown, I. H. (2018). Evaluation of ELISA and haemagglutination inhibition as screening tests in serosurveillance for H5/H7 avian influenza in commercial chicken flocks. Epidemiology and Infection, 146(3), 306–313. [CrossRef]
  • Avellaneda, G., Mundt, E., Lee, C. W., Jadhao, S., & Suarez, D. L. (2010). Differentiation of infected and vaccinated animals (DIVA) using the NS1 protein of avian influenza virus. Avian Diseases, 54(Suppl. 1), 278–286. [CrossRef]
  • Bande, F., Arshad, S. S., Hair-Bejo, M., Moeini, H., & Omar, A. R. (2015). Progress and challenges toward the development of vaccines against avian infectious bronchitis. Journal of Immunology Research, 2015, 424860. [CrossRef]
  • Bao, H., Zhao, Y., Wang, Y., Xu, X., Shi, J., Zeng, X., Wang, X., & Chen, H. (2014). Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of subtype H7N9 avian influenza virus. BioMed Research International, 2014, 525064. [CrossRef]
  • Bello, M. B., Yusoff, K., Ideris, A., Hair-Bejo, M., Peeters, B. P. H., & Omar, A. R. (2018a). Diagnostic and vaccination approaches for Newcastle disease virus in poultry: The current and emerging perspectives. BioMed Research International, 2018, 7278459. [CrossRef]
  • Bello, M. B., Yusoff, K. M., Ideris, A., Hair-Bejo, M., Peeters, B. P. H., Jibril, A. H., Tambuwal, F. M., & Omar, A. R. (2018b). Genotype diversity of Newcastle disease virus in Nigeria: Disease control challenges and future outlook. Advances in Virology, 2018, 6097291. [CrossRef]
  • Blakey, J., Crossley, B., Da Silva, A., Rejmanek, D., Jerry, C., Gallardo, R. A., & Stoute, S. (2020). Infectious bronchitis virus associated with nephropathy lesions in diagnostic cases from commercial broiler chickens in California. Avian Diseases, 64(4), 482–489. [CrossRef]
  • Carlı, K. T. (2019). Kanatlı hayvanlarin enfeksiyon hastaliklari. Ankara: Nobel Tıp Press.
  • Chacón, R. D., Astolfi-Ferreira, C. S., Chacón, J. L., Nuñez, L. F. N., De la Torre, D. I., & Piantino Ferreira, A. J. (2019). A seminested RT-PCR for molecular genotyping of the Brazilian BR-I Infectious Bronchitis Virus Strain (GI-11). Molecular and Cellular Probes, 47, 101426. [CrossRef]
  • Cox, N. J., Trock, S. C., & Uyeki, T. M. (2016). Public health implications of animal influenza viruses. Animal Influenza, 92–132
  • de Almeida, R. S., Hammoumi, S., Gil, P., Briand, F. X., Molia, S., Gaidet, N., Cappelle, J., Chevalier, V., Balança, G., Traoré, A., Grillet, C., Maminiaina, O. F., Guendouz, S., Dakouo, M., Samaké, K., Bezeid, Oel M., Diarra, A., Chaka, H., Goutard, F., Thompson, P., et al. (2013). New avian paramyxoviruses type I strains identified in Africa provide new outcomes for phylogeny reconstruction and genotype classification. PLoS One, 8(10), e76413. [CrossRef]
  • de Wit, J. J., Dijkman, R., Guerrero, P., Calvo, J., Gonzalez, A., & Hidalgo, H. (2017). Variability in biological behaviour, pathogenicity, protectotype and induction of virus neutralizing antibodies by different vaccination programmes to infectious bronchitis virus genotype Q1 strains from Chile. Avian Pathology, 46(6), 666–675. [CrossRef]
  • Diel, D. G., da Silva, L. H., Liu, H., Wang, Z., Miller, P. J., & Afonso, C. L. (2012). Genetic diversity of avian paramyxovirus type 1: Proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infection, Genetics and Evolution, 12(8), 1770–1779. [CrossRef]
  • Dimitrov, K. M., Ramey, A. M., Qiu, X., Bahl, J., & Afonso, C. L. (2016). Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus). Infection, Genetics and Evolution , 39, 22–34. [CrossRef]
  • Food and Agriculture Organization of the United Nations (FAO). (2016). Rational use of vaccination for prevention and control of H5 highly pathogenic avian influenza. Focus on, 10 (pp. 1–12). Rome, Italy: Food and Agriculture Organization.
  • Fuller, C., Löndt, B., Dimitrov, K. M., Lewis, N., van Boheemen, S., Fouchier, R., Coven, F., Goujgoulova, G., Haddas, R., & Brown, I. (2017). An epizootiological report of the re‐emergence and spread of a lineage of virulent Newcastle disease virus into Eastern Europe. Transboundary and Emerging Diseases, 64(3), 1001–1007. [CrossRef]
  • Ge, J., Deng, G., Wen, Z., Tian, G., Wang, Y., Shi, J., Wang, X., Li, Y., Hu, S., Jiang, Y., Yang, C., Yu, K., Bu, Z., & Chen, H. (2007). Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. Journal of Virology, 81(1), 150–158. [CrossRef]
  • Han, Z., Liwen, X., Ren, M., Sheng, J., Ma, T., Sun, J., Zhao, Y., & Liu, S. (2020). Genetic, antigenic and pathogenic characterization of avian coronaviruses isolated from pheasants (Phasianus colchicus) in China. Veterinary Microbiology, 240, 108513. [CrossRef]
  • Jackwood, M. W., & de Witt, S. (2020). Infectious bronchitis. In D. E. Swayne, et al. (Eds.), Diseases of poultry (pp. 167–188). Wiley-Blackwell. Jackwood, M. W., Hall, D., & Handel, A. (2012). Molecular evolution and emergence of avian gammacoronaviruses. Infection, Genetics and Evolution, 12(6), 1305–1311. [CrossRef]
  • James, J., Slomka, M. J., Reid, S. M., Thomas, S. S., Mahmood, S., Byrne, A. M. P., Cooper, J., Russell, C., Mollett, B. C., Agyeman-Dua, E., Essen, S., Brown, I. H., & Brookes, S. M. (2019). Proceedings paper: Avian diseases 10th AI symposium issue development and application of real-time PCR assays for specific detection of contemporary avian influenza virus Subtypes N5, N6, N7, N8, and N9. Avian Diseases, 63(sp1), 209–218. [CrossRef]
  • Ji, J., Xie, J., Chen, F., Shu, D., Zuo, K., Xue, C., Qin, J., Li, H., Bi, Y., Ma, J., & Xie, Q. (2011). Phylogenetic distribution and predominant genotype of the avian infectious bronchitis virus in China during 2008–2009. Virology Journal, 8(1), 184. [CrossRef]
  • Jordan, B. (2017). Vaccination against infectious bronchitis virus: A continuous challenge. Veterinary Microbiology, 206, 137–143. [CrossRef]
  • Kahya, K., Coven, F., Temelli, S., Eyigor, A., & Carli, K. T. (2013). Presence of IS/1494/06 genotype-related infectious bronchitis virus in breeder and broiler flocks in Turkey. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 60(1), 27–31. [CrossRef]
  • Khataby, K., Kasmi, Y., Souiri, A., Loutfi, C., & Ennaji, M. M. (2020). Avian coronavirus: Case of infectious bronchitis virus pathogenesis, diagnostic approaches, and phylogenetic relationship among emerging strains in Middle East and North Africa regions. Emerging and Reemerging Viral Pathogens, 2020, 729–744.
  • Kim, S. M., Kim, Y. I., Pascua, P. N. Q., & Choi, Y. K. (2016). Avian influenza A viruses: Evolution and zoonotic infection. Seminars in Respiratory and Critical Care Medicine, 37(4), 501–511. [CrossRef]
  • Kwon, N., Ahn, J. J., Kim, J. H., Kim, S., Lee, J. H., Kwon, J. H., Song, C. S., & Hwang, S. Y. (2019). Rapid subtyping and pathotyping of avian influenza virus using Chip-based RT-PCR. BioChip Journal, 13(4), 333–340.
  • Lau, L. T., Banks, J., Aherne, R., Brown, I. H., Dillon, N., Collins, R. A., Chan, K. Y., Fung, Y. W. W., Xing, J., & Yu, A. C. (2004). Nucleic acid sequence-based amplification methods to detect avian influenza virus. Biochemical and Biophysical Research Communications, 313(2), 336–342. [CrossRef]
  • Lee, D. H., Fusaro, A., Song, C. S., Suarez, D. L., & Swayne, D. E. (2016). Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea. Virology, 488, 225–231. [CrossRef]
  • Lee, Y. N., Lee, D. H., Cheon, S. H., Park, Y. R., Baek, Y. G., Si, Y. J., Kye, S. J., Lee, E. K., Heo, G. B., Bae, Y. C., Lee, M. H., & Lee, Y. J. (2020). Genetic characteristics and pathogenesis of H5 low pathogenic avian influenza viruses from wild birds and domestic ducks in South Korea. Scientific Reports, 10(1), 12151. [CrossRef]
  • Li, L., Xue, C., Chen, F., Qin, J., Xie, Q., Bi, Y., & Cao, Y. (2010). Isolation and genetic analysis revealed no predominant new strains of avian infectious bronchitis virus circulating in South China during 2004–2008. Veterinary Microbiology, 143(2–4), 145–154. [CrossRef]
  • Lin, S. Y., & Chen, H. W. (2017). Infectious bronchitis virus variants: Molecular analysis and pathogenicity investigation. International Journal of Molecular Sciences, 18(10), 2030. [CrossRef]
  • Maminiaina, O. F., Gil, P., Briand, F. X., Albina, E., Keita, D., Andriamanivo, H. R., Chevalier, V., Lancelot, R., Martinez, D., Rakotondravao, R., Rajaonarison, J. J., Koko, M., Andriantsimahavandy, A. A., Jestin, V., & Servan de Almeida, R. S. (2010). Newcastle disease virus in Madagascar: Identification of an original genotype possibly deriving from a died out ancestor of genotype IV. PLOS ONE, 5(11), e13987. [CrossRef]
  • Miller, P. J., & Koch, G. (2020). Newcastle disease. In D. E. Swayne, et al. (Eds.), Diseases of poultry (pp. 112–129). Wiley-Blackwell.
  • Miller, P. J., Haddas, R., Simanov, L., Lublin, A., Rehmani, S. F., Wajid, A., Bibi, T., Khan, T. A., Yaqub, T., Setiyaningsih,S., & Afonso, C. L. (2015). Identification of new sub-genotypes of virulent Newcastle disease virus with potential panzootic features. Infection, Genetics and Evolution , 29, 216–229. [CrossRef]
  • Montassier, H. J. (2010). Molecular epidemiology and evolution of avian infectious bronchitis virus. Revista Brasileira de Ciência Avícola, 12(2), 87–96. [CrossRef]
  • Najafi, H., Langeroudi, A. G., Hashemzadeh, M., Karimi, V., Madadgar, O., Ghafouri, S. A., Maghsoudlo, H., & Farahani, R. K. (2016). Molecular characterization of infectious bronchitis viruses isolated from broiler chicken farms in Iran, 2014–2015. Archives of Virology, 161(1), 53–62. [CrossRef]
  • OIE World Organisation for Animal Health (2018). Manual of diagnostic tests and vaccines for terrestrial animals [Online]. Retrieved from https://ww w.oie.int/standard-setting/terrestrial-manual/access-online/.
  • Okamatsu, M., Hiono, T., Kida, H., & Sakoda, Y. (2016). Recent developments in the diagnosis of avian influenza. Veterinary Journal, 215, 82–86. [CrossRef]
  • Palya, V., Kiss, I., Tatár-Kis, T., Mató, T., Felföldi, B., & Gardin, Y. (2012). Advancement in vaccination against Newcastle disease: Recombinant HVT NDV provides high clinical protection and reduces challenge virus shedding with the absence of vaccine reactions. Avian Diseases, 56(2), 282–287. [CrossRef]
  • Rauw, F., Gardin, Y., Palya, V., Anbari, S., Lemaire, S., Boschmans, M., van den Berg, T., & Lambrecht, B. (2010). Improved vaccination against Newcastle disease by an in ovo recombinant HVT-ND combined with an adjuvanted live vaccine at day-old. Vaccine, 28(3), 823–833. [CrossRef]
  • Rauw, F., Palya, V., Van Borm, S., Welby, S., Tatar-Kis, T., Gardin, Y., Dorsey, K. M., Aly, M. M., Hassan, M. K., Soliman, M. A., Lambrecht, B., & Van den Berg, T. (2011). Further evidence of antigenic drift and protective efficacy afforded by a recombinant HVT-H5 vaccine against challenge with two antigenically divergent Egyptian clade 2.2. 1 HPAI H5N1 strains. Vaccine, 29(14), 2590–2600. [CrossRef]
  • Ren, G., Liu, F., Huang, M., Li, L., Shang, H., Liang, M., Luo, Q., & Chen, R. (2020). Pathogenicity of a QX-like avian infectious bronchitis virus isolated in China. Poultry Science, 99(1), 111–118. [CrossRef]
  • Roussan, D. A., Haddad, R., & Khawaldeh, G. (2008). Molecular survey of avian respiratory pathogens in commercial broiler chicken flocks with respiratory diseases in Jordan. Poultry Science, 87(3), 444–448. [CrossRef]
  • Rui, Z., Juan, P., Jingliang, S., Jixun, Z., Xiaoting, W., Shouping, Z., Xiaojiao, L., & Guozhong, Z. (2010). Phylogenetic characterization of Newcastle disease virus isolated in the mainland of China during 2001–2009. Veterinary Microbiology, 141(3–4), 246–257. [CrossRef]
  • Samy, A., & Naguib, M. M. (2018). Avian respiratory coinfection and impact on avian influenza pathogenicity in domestic poultry: Field and experimental findings. Veterinary Sciences, 5(1), 23. [CrossRef]
  • Schalk, A. (1931). An apparently new respiratory disease of baby chicks. Journal of the American Veterinary Medical Association, 78, 413–423.
  • Sid, H., Benachour, K., & Rautenschlein, S. (2015). Co-infection with multiple respiratory pathogens contributes to increased mortality rates in Algerian poultry flocks. Avian Diseases, 59(3), 440–446. [CrossRef]
  • Smialek, M., Tykalowski, B., Dziewulska, D., Stenzel, T., & Koncicki, A. (2017). Immunological aspects of the efficiency of protectotype vaccination strategy against chicken infectious bronchitis. BMC Veterinary Research, 13(1), 44. [CrossRef]
  • Spackman, E., & Killian, M. L. (2014). Avian influenza virus isolation, propagation, and titration in embryonated chicken eggs. Animal influenza virus (pp. 125–140). New York, NY: Humana Press.
  • Sutton, T. C. (2018). The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses, 10(9), 461. [CrossRef]
  • Swayne, D. E., Suarez, D. L., & Sims, L. D. (2020). Influenza. In D. E. Swayne, et al. (Eds.), Diseases of poultry (pp. 210–256). Wiley-Blackwell.
  • Swayne, D. E., Suarez, D. L., Spackman, E., Jadhao, S., Dauphin, G., Kim-Torchetti, M., McGrane, J., Weaver, J., Daniels, P., Wong, F., Selleck, P., Wiyono, A., Indriani, R., Yupiana, Y., Sawitri Siregar, E., Prajitno, T., Smith, D., & Fouchier, R. (2015). Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia. Journal of Virology, 89(7), 3746–3762. [CrossRef]
  • Tang, W., Li, X., Tang, L., Wang, T., & He, G. (2021). Characterization of the lowpathogenic H7N7 avian influenza virus in Shanghai, China. Poultry Science, 100(2), 565–574. [CrossRef]
  • Turan, N., Ozsemir, C., Yilmaz, A., Cizmecigil, U. Y., Aydin, O., Bamac, O. E., Gurel, A., Kutukcu, A., Ozsemir, K., Tali, H. E., Tali, B. H., Yilmaz, S. G., Yaramanoglu, M., Tekelioğlu, B. K., Ozsoy, S., Richt, J. A., Iqbal, M., & Yilmaz, H. (2020). Identification of Newcastle disease virus subgenotype VII. 2 in wild birds in Turkey. BMC Veterinary Research, 16(1), 277. [CrossRef]
  • Valastro, V., Holmes, E. C., Britton, P., Fusaro, A., Jackwood, M. W., Cattoli, G., & Monne, I. (2016). S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. Infection, Genetics and Evolution, 39, 349–364. [CrossRef]
  • van Boven, M., Bouma, A., Fabri, T. H., Katsma, E., Hartog, L., & Koch, G. (2008). Herd immunity to Newcastle disease virus in poultry by vaccination. Avian Pathology , 37(1), 1–5. [CrossRef]
  • Welch, B. D., Yuan, P., Bose, S., Kors, C. A., Lamb, R. A., & Jardetzky, T. S. (2013). Structure of the parainfluenza virus 5 (PIV5) hemagglutinin-neuraminidase (HN) ectodomain. PLoS Pathogens, 9(8), e1003534. [CrossRef].
  • World Health Organization (2005). Avian influenza: Assessing the pandemic threat (No. WHO/CDS/2005.29). Retrieved from https://apps.who.int/iris /handle/10665/68985.
  • Yu, J., Shi, F. S., & Hu, S. (2015). Improved immune responses to a bivalent vaccine of Newcastle disease and avian influenza in chickens by ginseng stem-leaf saponins. Veterinary Immunology and Immunopathology, 167(3–4), 147–155. [CrossRef]
APA Ardıçlı Ö, kahya s, Carlı K, Coven F (2022). How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. , 69 - 77. 10.5152/actavet.2022.21060
Chicago Ardıçlı Özge,kahya serpil,Carlı Kamil Tayfun,Coven Fethiye How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. (2022): 69 - 77. 10.5152/actavet.2022.21060
MLA Ardıçlı Özge,kahya serpil,Carlı Kamil Tayfun,Coven Fethiye How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. , 2022, ss.69 - 77. 10.5152/actavet.2022.21060
AMA Ardıçlı Ö,kahya s,Carlı K,Coven F How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. . 2022; 69 - 77. 10.5152/actavet.2022.21060
Vancouver Ardıçlı Ö,kahya s,Carlı K,Coven F How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. . 2022; 69 - 77. 10.5152/actavet.2022.21060
IEEE Ardıçlı Ö,kahya s,Carlı K,Coven F "How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?." , ss.69 - 77, 2022. 10.5152/actavet.2022.21060
ISNAD Ardıçlı, Özge vd. "How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?". (2022), 69-77. https://doi.org/10.5152/actavet.2022.21060
APA Ardıçlı Ö, kahya s, Carlı K, Coven F (2022). How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. Acta Veterinaria Eurasia, 48(1), 69 - 77. 10.5152/actavet.2022.21060
Chicago Ardıçlı Özge,kahya serpil,Carlı Kamil Tayfun,Coven Fethiye How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. Acta Veterinaria Eurasia 48, no.1 (2022): 69 - 77. 10.5152/actavet.2022.21060
MLA Ardıçlı Özge,kahya serpil,Carlı Kamil Tayfun,Coven Fethiye How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. Acta Veterinaria Eurasia, vol.48, no.1, 2022, ss.69 - 77. 10.5152/actavet.2022.21060
AMA Ardıçlı Ö,kahya s,Carlı K,Coven F How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. Acta Veterinaria Eurasia. 2022; 48(1): 69 - 77. 10.5152/actavet.2022.21060
Vancouver Ardıçlı Ö,kahya s,Carlı K,Coven F How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?. Acta Veterinaria Eurasia. 2022; 48(1): 69 - 77. 10.5152/actavet.2022.21060
IEEE Ardıçlı Ö,kahya s,Carlı K,Coven F "How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?." Acta Veterinaria Eurasia, 48, ss.69 - 77, 2022. 10.5152/actavet.2022.21060
ISNAD Ardıçlı, Özge vd. "How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?". Acta Veterinaria Eurasia 48/1 (2022), 69-77. https://doi.org/10.5152/actavet.2022.21060