Yıl: 2021 Cilt: 45 Sayı: 2 Sayfa Aralığı: 269 - 281 Metin Dili: İngilizce DOI: 10.3906/kim-1911-60 İndeks Tarihi: 27-06-2022

Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline

Öz:
Zero-valent iron (ZVI)- and zero-valent aluminium (ZVA)-activated persulfate (PS) oxidation procedure was applied to remove the industrial pollutants 3,5-dichlorophenol (3,5-DCP; 12.27 µM) and 2,4-dichloroaniline (2,4-DCA; 12.34 µM) from aqueous solutions. The effects of PS concentration and pH were investigated to optimize heterogeneous treatment systems. Negligible removals were obtained for both pollutants by individual applications of nanoparticles (1 g/L) and PS (1.00 mM). PS activation with ZVI resulted in 59% (1.00 mM PS; 1 g/L ZVI; pH 5.0; 120 min) and 100% (0.75 mM PS; 1 g/L ZVI; pH 5.0; 80 min) 3,5-DCP and 2,4-DCA removals, respectively. The ZVA/PS treatment system gave rise to only 31% 3,5-DCP (1.00 mM PS; 1 g/L ZVA; pH 3.0; 120 min) and 47% 2,4- DCA (0.25 mM PS; 1 g/L ZVA; pH 3.0; 120 min) removals. The pH decreases from 5.0 to 3.0 and from 3.0 to 1.5 enhanced contaminant removals for ZVI/PS and ZVA/PS treatments, respectively. Pollutant removal rates were in correlation with the consumption rates of the oxidants. Metal ion (Al, Fe) release increased in the presence of PS and with decreasing pH.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Karci A. Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere 2014; 99: 1-18. doi: 10.1016/j.chemosphere.2013.10.034
  • 2. Arabatzis I, Antonarak S, Stergiopoulos T, Hiskia A, Papaconstantinou E et al. Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. Journal of Photochemistry and Photobiology A: Chemistry 2002; 149 (1-3): 237-245. doi: 10.1016/S1010-6030(01)00645-1
  • 3. Pascal-Lorber S, Rathahao E, Cravedi J, Laurent F. Uptake and metabolic fate of [14C]-2,4-dichlorophenol and [14C]-2,4-dichloroaniline in wheat (Triticum aestivum) and soybean (Glycine max). Journal of Agricultural and Food Chemistry 2003; 51 (16): 4712-4718. doi: 10.1021/jf034230j
  • 4. Games LM, Hites RA. Composition, treatment efficiency, and environmental significance of dye manufacturing plant effluents. Analytical Chemistry 1977; 49 (9): 1433-1440. doi: 10.1021/ac50017a035
  • 5. Garba ZN, Zhou W, Lawan I, Xiao W, Zhang M et al. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review. Journal of Environmental Management 2019; 241: 59-75. doi: 10.1016/j.jenvman.2019.04.004
  • 6. Hwang HM, McCullum D, Slaughter L. Phototransformation of 2,4-dichloroaniline in a surface freshwater environment: effects on microbial assemblages. Bulletin of Environmental Contamination and Toxicology 1998; 60 (1): 81-87. doi: 10.1007/s001289900594
  • 7. Baciocchi R, Boni MR, Lavecchia R. Modeling of chlorophenols competitive adsorption on soils by means of the ideal adsorbed solution theory. Journal of Hazardous Materials 2005; 118 (1-3): 239-246. doi: 10.1016/j.jhazmat.2004.11.010
  • 8. Sinkkonen S, Rantio T, Paasivirta J, Peltonen S, Vattulainen A et al. Chlorinated phenolic compounds in coniferous needles. Effects of metal and paper industry and incineration. Chemosphere 1997; 35 (6): 1175-1185. doi: 10.1016/S0045-6535(97)00189-6
  • 9. Xie L, Gomes T, Solhaug KA, Song Y, Tollefsen KE. Linking mode of action of the model respiratory and photosynthesis uncoupler 3,5-dichlorophenol to adverse outcomes in Lemna minor. Aquatic Toxicology 2018; 197: 98-108. doi: 10.1016/j.aquatox.2018.02.005
  • 10. Ge T, Han J, Qi Y, Gu X, Ma L et al. The toxic effects of chlorophenols and associated mechanisms in fish. Aquatic Toxicology 2017; 184: 78-93. doi: 10.1016/j.aquatox.2017.01.005
  • 11. Kilemade M, Mothersill C. Expression of delayed cell death (DCD) in the progeny of fish cells surviving 2,4-dichloroaniline (2,4-DCA) exposure. Aquatic Toxicology 2003; 63 (3): 207-219. doi: 10.1016/s0166-445x(02)00180-7
  • 12. Brack A, Strube J, Stolz P, Decker H. Effects of ultrahigh dilutions of 3,5-dichlorophenol on the luminescence of the bacterium Vibrio fischeri. Biochimica et Biophysica Acta (BBA) - General Subjects 2003; 1621 (3): 253-260. doi: 10.1016/s0304-4165(03)00076-x
  • 13. Van Gestel CAM, Van Dis WA, Van Breemen EM, Sparenburg PM. Development of a standardized reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol, and 2,4-dichloroaniline. Ecotoxicology and Environmental Safety 1989; 18 (3): 305-312. doi: 10.1016/0147-6513(89)90024-9
  • 14. Kimura Z, Hirano Y, Matsuzawa Y, Hiraishi A. Effects of 3,5-dichlorophenol on excess biomass reduction and bacterial community dynamics in activated sludge as revealed by a polyphasic approach. Journal of Bioscience and Bioengineering 2016; 122 (4): 467-474. doi: 10.1016/j. jbiosc.2016.03.021
  • 15. Pambrun V, Marquot A, Racault Y. Characterization of the toxic effects of cadmium and 3.5-dichlorophenol on nitrifying activity and mortality in biologically activated sludge systems - effect of low temperature. Environmental Science and Pollution Research 2008; 15 (7): 592-599. doi: 10.1007/s11356-008-0029-9
  • 16. European Environment Agency. 2455/2001/EC: Decision N0 2455/2001/EC of the European Parliament and of the Council of 20 November 2001. Establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC.
  • 17. U.S. Environmental Protection Agency (EPA). Ambient water quality criteria for chlorinated phenols. Rep. No. 440/5-80-032. Cincinnati, OH, USA: EPA, 1980.
  • 18. Karci A, Arslan-Alaton I, Olmez-Hanci T, Bekbölet M. Transformation of 2,4-dichlorophenol by $H_2O_2/UV-C$, Fenton and photo-Fenton processes: oxidation products and toxicity evolution. Journal of Photochemistry and Photobiology A: Chemistry 2012; 230 (1): 65-73. doi: 10.1016/j.jphotochem.2012.01.003
  • 19. Yang S, Zheng D, Ren T, Zhang Y, Xin J. Zero-valent aluminum for reductive removal of aqueous pollutants over a wide pH range: performance and mechanism especially at near-neutral pH. Water Research 2017; 123: 704-714. doi: 10.1016/j.watres.2017.07.013
  • 20. Tian N, Tian X, Nie Y, Yang C, Zhou Z et al. Enhanced 2,4-dichlorophenol degradation at pH 3–11 by peroxymonosulfate via controlling the reactive oxygen species over Ce substituted 3D $Mn_2O_3$. Chemical Engineering Journal 2019; 355: 448-456. doi: 10.1016/j.cej.2018.08.183
  • 21. Hu CY, Hou YZ, Lin YL, Deng YG, Hua SJ et al. Investigation of iohexol degradation kinetics by using heat-activated persulfate. Chemical Engineering Journal 2020; 379: 122403. doi: 10.1016/j.cej.2019.122403
  • 22. Cao M, Hou Y, Zhang E, Tu S, Xiong S. Ascorbic acid induced activation of persulfate for pentachlorophenol degradation. Chemosphere 2019; 229: 200-205. doi: 10.1016/j.chemosphere.2019.04.135
  • 23. Bokare AD, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environmental Science & Technology 2009; 43 (18): 7130-7135. doi: 10.1021/es9013823
  • 24. Qiu Y, Kuo CH, Zappi ME, Fleming EC. Ozonation of 2,6-, 3,4-, and 3,5-dichlorophenol isomers within aqueous solutions. Journal of Environmental Engineering 2004; 130 (4): 408-416. doi: 10.1061/(asce)0733-9372(2004)130:4(408)
  • 25. Jain B, Singh AK, Kim H, Lichtfouse E, Sharma VK. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environmental Chemistry Letters 2018; 16 (3): 947-967. doi: 10.1007/s10311-018-0738-3
  • 26. Farre M, Domenech X, Peral J. Assessment of photo-Fenton and biological treatment coupling for Diuron and Linuron removal from water. Water Research 2006; 40 (13): 2533-2540. doi: 10.1016/j.watres.2006.04.034
  • 27. Zhou C, Wang Y, Chen J, Niu J. Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by $Ti/SnO_2-Sb/CePbO_2$ anode: kinetics, mechanism, toxicity and energy consumption. Science of The Total Environment 2019; 688: 75-82. doi: 10.1016/j. scitotenv.2019.06.197
  • 28. Adityosulindro S, Barthe L, González-Labrada K, Jáuregui Haza UJ, Delmas H et al. Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)water. Ultrasonics Sonochemistry 2017; 39: 889-896. doi: 10.1016/j.ultsonch.2017.06.008
  • 29. Qi C, Liu X, Lin C, Zhang H, Li X et al. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chemical Engineering Journal 2017; 315: 201-209. doi: 10.1016/j.cej.2017.01.012
  • 30. Minière M, Boutin O, Soric A. Evaluation of degradation and kinetics parameters of acid orange 7 through wet air oxidation process. The Canadian Journal of Chemical Engineering 2018; 96 (11): 2450-2454. doi: 10.1002/cjce.23195
  • 31. Zhang H, Zhang Q, Miao C, Huang Q. Degradation of 2, 4-dichlorophenol in aqueous solution by dielectric barrier discharge: effects of plasma-working gases, degradation pathways and toxicity assessment. Chemosphere 2018; 204: 351-358. doi: 10.1016/j. chemosphere.2018.04.052
  • 32. Wang H, Zhan J, Yao W, Wang B, Deng S et al. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone $(O_3/H_2O_2_)$, and an electro-peroxone process. Water Research 2018; 130: 127-138. doi: 10.1016/j.watres.2017.11.054
  • 33. Pikaev AK, Zolotarevskii VI. Pulse radiolysis of aqueous solutions of sulfuric acid. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 1967; 16 (1): 181-182. doi: 10.1007/bf00907128
  • 34. Neta P, Huie RE, Ross AB. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data 1988; 17 (3): 1027-1284. doi: 10.1063/1.555808
  • 35. Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O- in aqueous solution. Journal of Physical and Chemical Reference Data 1988; 17 (2). doi: 10.1063/1.555805
  • 36. Yang Z, Su R, Luo S, Spinney R, Cai M et al. Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study. Science of The Total Environment 2017; 590-591: 751-760. doi: 10.1016/j.scitotenv.2017.03.039
  • 37. Arslan-Alaton I, Kolba O, Olmez-Hanci T. Removal of an X-Ray contrast chemical from tertiary treated wastewater: investigation of persulfate-mediated photochemical treatment systems. Catalysis Today 2018; 313: 134-141. doi: 10.1016/j.cattod.2017.11.002
  • 38. Zhou D, Chen L, Li J, Wu F. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: a state-ofthe-art mini review. Chemical Engineering Journal 2018; 346: 726-738. doi: 10.1016/j.cej.2018.04.016
  • 39. Dogan M, Ozturk T, Olmez-Hanci T, Arslan-Alaton I. Persulfate and hydrogen peroxide-activated degradation of bisphenol A with nanoscale zero-valent iron and aluminum. Journal of Advanced Oxidation Technologies 2016; 19 (2): 266-275. doi: 10.1515/jaots-2016-0210
  • 40. Pulicharla R, Drouinaud R, Brar SK, Drogui P, Proulx F et al. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. Chemosphere 2018; 207: 543-551. doi: 10.1016/j.chemosphere.2018.05.134
  • 41. Arslan-Alaton I, Olmez-Hanci T, Dogan M, Ozturk T. Zero-valent aluminum-mediated degradation of bisphenol A in the presence of common oxidants. Water Science and Technology 2017; 76 (9): 2455-2464. doi: 10.2166/wst.2017.411
  • 42. Girit B, Dursun D, Olmez-Hanci T, Arslan-Alaton I. Treatment of aqueous bisphenol A using nano-sized zero-valent iron in the presence of hydrogen peroxide and persulfate oxidants. Water Science and Technology 2015; 71 (12): 1859-1868. doi: 10.2166/wst.2015.175
  • 43. Temiz K, Olmez-Hanci T, Arslan-Alaton I. Zero-valent iron-activated persulfate oxidation of a commercial alkyl phenol polyethoxylate. Environmental Technology 2016; 37 (14): 1757-1767. doi: 10.1080/09593330.2015.1131751
  • 44. Yangin-Gomec C, Olmez-Hanci T, Arslan-Alaton I, Khoei S, Fakhri H. Iopamidol degradation with ZVI- and ZVA-activated chemical oxidation: investigation of toxicity, anaerobic inhibition and microbial communities. Journal of Environmental Chemical Engineering 2018; 6 (6): 7318-7326. doi: 10.1016/j.jece.2018.09.028
  • 45. Wei X, Gao N, Li C, Deng Y, Zhou S et al. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water. Chemical Engineering Journal 2016; 285: 660-670. doi: 10.1016/j.cej.2015.08.120
  • 46. Hayat W, Zhang Y, Hussain I, Du X, Du M et al. Efficient degradation of imidacloprid in water through iron activated sodium persulfate. Chemical Engineering Journal 2019; 370: 1169-1180. doi: 10.1016/j.cej.2019.03.261
  • 47. Ren T, Yang S, Wu S, Wang M, Xue Y. High-energy ball milling enhancing the reactivity of microscale zero-valent aluminum toward the activation of persulfate and the degradation of trichloroethylene. Chemical Engineering Journal 2019; 374: 100-111. doi: 10.1016/j. cej.2019.05.172
  • 48. Arslan-Alaton I, Olmez-Hanci T, Korkmaz G, Sahin C. Removal of iopamidol, an iodinated X-ray contrast medium, by zero-valent aluminum-activated $H_2O_2$ and S2O8 2−. Chemical Engineering Journal 2017; 318: 64-75. doi: 10.1016/j.cej.2016.05.021
  • 49. Tabak A, Afsin B, Caglar B, Koksal E. Characterization and pillaring of a Turkish bentonite (Resadiye). Journal of Colloid and Interface Science 2007; 313 (1): 5-11. doi: 10.1016/j.jcis.2007.02.086
  • 50. Matthes W, Kahr G. Sorption of organic compounds by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays and Clay Minerals 2000; 48 (6): 593-602. doi: 10.1346/CCMN.2000.0480601
  • 51. National Toxicology Program, Institute of Environmental Health Sciences, National Institutes of Health (NTP). National Toxicology Program Chemical Repository Database. Research Triangle Park, NC, USA: NTP, 1992.
  • 52. Bokare AD, Choi W. Review of iron-free Fenton-like systems for activating $H_2O_2$ in advanced oxidation processes. Journal of Hazardous Materials 2014; 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054
  • 53. Villegas E, Pomeranz Y, Shellenberger JA. Colorimetric determination of persulfate with alcian blue. Analytica Chimica Acta 1963; 29: 145-148. doi: 10.1016/s0003-2670(00)88595-5
  • 54. TS EN ISO 17294-2. Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of 62 elements.
  • 55. Huie RE, Clifton CL. Rate constants for hydrogen abstraction reactions of the sulfate radical, $SO_4$·-. Alkanes and ethers. International Journal of Chemical Kinetic 1989; 21 (8): 611-619. doi: 10.1002/kin.550210802
  • 56. Yu X-Y, Bao Z-C, Barker JR. Free Radical Reactions Involving $Cl•, Cl^2-•, and SO_4·-$ in the 248 nm photolysis of aqueous solutions containingS2O82- and Cl-. The Journal of Physical Chemistry A 2004; 108 (2): 295-308. doi: 10.1021/jp036211i
  • 57. Zhang H, Choi HJ, Huang C-P. Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials 2005; 125 (1-3): 166-174. doi: 10.1016/j.jhazmat.2005.05.025
  • 58. Li H, Wan J, Ma Y, Huang M, Wang Y et al. New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions. Chemical Engineering Journal 2014; 250: 137-147. doi: 10.1016/j.cej.2014.03.092
  • 59. Li R, Jin X, Megharaj M, Naidu R, Chen Z. Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal 2015; 264: 587-594. doi: 10.1016/j.cej.2014.11.128
  • 60. Arslan-Alaton I, Olmez-Hanci T, Khoei S, Fakhri H. Oxidative degradation of Triton X-45 using zero valent aluminum in the presence of hydrogen peroxide, persulfate and peroxymonosulfate. Catalysis Today 2017; 280: 199-207. doi: 10.1016/j.cattod.2016.04.039
APA Koba Ucun O, Montazeri B, Arslan-Alaton I, Olmez-Hanci T (2021). Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. , 269 - 281. 10.3906/kim-1911-60
Chicago Koba Ucun Olga,Montazeri Bahareh,Arslan-Alaton Idil,Olmez-Hanci Tugba Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. (2021): 269 - 281. 10.3906/kim-1911-60
MLA Koba Ucun Olga,Montazeri Bahareh,Arslan-Alaton Idil,Olmez-Hanci Tugba Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. , 2021, ss.269 - 281. 10.3906/kim-1911-60
AMA Koba Ucun O,Montazeri B,Arslan-Alaton I,Olmez-Hanci T Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. . 2021; 269 - 281. 10.3906/kim-1911-60
Vancouver Koba Ucun O,Montazeri B,Arslan-Alaton I,Olmez-Hanci T Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. . 2021; 269 - 281. 10.3906/kim-1911-60
IEEE Koba Ucun O,Montazeri B,Arslan-Alaton I,Olmez-Hanci T "Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline." , ss.269 - 281, 2021. 10.3906/kim-1911-60
ISNAD Koba Ucun, Olga vd. "Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline". (2021), 269-281. https://doi.org/10.3906/kim-1911-60
APA Koba Ucun O, Montazeri B, Arslan-Alaton I, Olmez-Hanci T (2021). Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. Turkish Journal of Chemistry, 45(2), 269 - 281. 10.3906/kim-1911-60
Chicago Koba Ucun Olga,Montazeri Bahareh,Arslan-Alaton Idil,Olmez-Hanci Tugba Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. Turkish Journal of Chemistry 45, no.2 (2021): 269 - 281. 10.3906/kim-1911-60
MLA Koba Ucun Olga,Montazeri Bahareh,Arslan-Alaton Idil,Olmez-Hanci Tugba Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. Turkish Journal of Chemistry, vol.45, no.2, 2021, ss.269 - 281. 10.3906/kim-1911-60
AMA Koba Ucun O,Montazeri B,Arslan-Alaton I,Olmez-Hanci T Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. Turkish Journal of Chemistry. 2021; 45(2): 269 - 281. 10.3906/kim-1911-60
Vancouver Koba Ucun O,Montazeri B,Arslan-Alaton I,Olmez-Hanci T Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. Turkish Journal of Chemistry. 2021; 45(2): 269 - 281. 10.3906/kim-1911-60
IEEE Koba Ucun O,Montazeri B,Arslan-Alaton I,Olmez-Hanci T "Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline." Turkish Journal of Chemistry, 45, ss.269 - 281, 2021. 10.3906/kim-1911-60
ISNAD Koba Ucun, Olga vd. "Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline". Turkish Journal of Chemistry 45/2 (2021), 269-281. https://doi.org/10.3906/kim-1911-60