Yıl: 2021 Cilt: 45 Sayı: 1 Sayfa Aralığı: 231 - 247 Metin Dili: İngilizce DOI: 10.3906/kim-2009-66 İndeks Tarihi: 28-06-2022

$CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis

Öz:
$CO_2$ valorization through chemical reactions attracts significant attention due to the mitigation of greenhouse gas effects. This article covers the catalytic hydrogenation of$CO_2$ to methanol and dimethyl ether using Cu-Ho-Ga containing ZSM-5 and g-Al2O3 at atmospheric pressure and at temperatures of 210 °C and 260 °C using a $CO_2:H_2$ feed ratio of 1:3 and 1:9. In addition, the thermodynamic limitations of methanol and DME formation from $CO_2$ was investigated at a temperature range of 100–400 °C. $Cu-Ho-Ga/ gamma -Al_2O_3$ catalyst shows the highest formation rate of methanol $(90.3 µmolCH3OH/g_{cat}/h )$ and DME (13.2 µmolDME/gcat/h) as well as the highestselectivity towards methanol and DME (39.9 %) at 210 °C using a $CO_2:H_2$ 1:9 feed ratio. In both the thermodynamic analysis and reaction results, the higher concentration of H2 in the feed and lower reaction temperature resulted in higher DME selectivity and lowerCO production rates.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. van Santen RA. Renewable catalytic technologies - a perspective. In: Centi G, van Santen RA (editors). Catalysis for Renewables: From Feedstock to Energy Production. Weinheim, Deutschland: Wiley, 2007; pp. 1-19. doi: 10.1002/9783527621118.ch1
  • 2. Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today 2009; 148 (3-4): 191-205. doi: 10.1016/j.cattod.2009.07.075
  • 3. Tijm PJA, Waller FJ, Brown DM. Methanol technology developments for the new millennium. Applied Catalysis A: General 2001; 221 (1-2): 275-282. doi: 10.1016/S0926-860X(01)00805-5
  • 4. Waugh KC. Methanol synthesis. Catalysis Letters 2012; 142 (10): 1153-1166. doi: 10.1007/s10562-012-0905-2
  • 5. Liang B, Ma J, Su X, Yang C, Duan H et al. Investigation on deactivation of $Cu/ZnO/Al_2O_3 catalyst for CO_2$ hydrogenation to methanol. Industrial and Engineering Chemistry Research 2019; 58 (21): 9030-9037. doi: 10.1021/acs.iecr.9b01546
  • 6. Samimi F, Rahimpour MR, Shariati A. Development of an efficient methanol production process for direct $CO_2$ hydrogenation over a $Cu/ZnO/Al_2O_3$ catalyst. Catalysts 2017; 7 (11): 332. doi: 10.3390/catal7110332
  • 7. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA. Mechanism of methanol synthesis from $CO_2 /CO/H_2$ mixtures over copper/ zinc oxide/alumina catalysts: use of 14C-labelled reactants. Applied Catalysis 1987; 30 (2): 333-338. doi: 10.1016/S0166-9834(00)84123-8
  • 8. Iwasa N, Suzuki H, Arai M, Takezawa N. Methanol synthesis from $CO_2$ under atmospheric pressure over supported Pd catalysts. Catalysis Letters 2004; 96 (July): 75-78. doi: 1011-372X/04/0700–0075/0
  • 9. Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjaer CF, Hummelshøj JS et al. Discovery of a Ni-Ga catalyst for Carbon Dioxide Reduction to Methanol. Nature Chemistry 2014; 6: 320-324.
  • 10. Sharafutdinov I, Elkjær CF, De Carvalho HWP, Gardini D, Chiarello GL et al. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. Journal of Catalysis 2014; 320 (1): 77-88. doi: 10.1016/j.jcat.2014.09.025
  • 11. Díez-Ramírez J, Dorado F, De La Osa AR, Valverde JL, Sánchez P. Hydrogenation of $CO_2$ to Methanol at Atmospheric Pressure over Cu/ ZnO Catalysts: Influence of the Calcination, Reduction, and Metal Loading. Industrial and Engineering Chemistry Research 2017; 56 (8): 1979-1987. doi: 10.1021/acs.iecr.6b04662
  • 12. Bozzano G, Manenti F. Efficient methanol synthesis: Perspectives, technologies and optimization strategies. Progress in Energy and Combustion Science 2016; 56: 71-105. doi: 10.1016/j.pecs.2016.06.001
  • 13. Ahmad K, Upadhyayula S. Conversion of the greenhouse gas $CO_2$ to methanol over supported intermetallic Ga–Ni catalysts at atmospheric pressure: thermodynamic modeling and experimental study. Sustainable Energy and Fuels 2019; 3 (9): 2509-2520. doi: 10.1039/c9se00165d
  • 14. Zohour B, Yilgor I, Gulgun MA, Birer O, Unal U et al. Discovery of superior Cu-GaOx-HoOy catalysts for the reduction of carbon dioxide to methanol at atmospheric pressure. ChemCatChem 2016; 8 (8): 1464-1469. doi: 10.1002/cctc.201600020
  • 15. Catizzone E, Bonura G, Migliori M, Frusteri F, Giordano G. $CO_2$ recycling to dimethyl ether: State-of-the-art and perspectives. Molecules 2018; 23 (1): 1-28. doi: 10.3390/molecules23010031
  • 16. Aguayo AT, Ereña J, Mier D, Arandes JM, Olazar M, Bilbao J. Kinetic modeling of dimethyl ether synthesis in a single step on a $CuO-ZnOAl_2O_3/γ-Al_2O_3$ catalyst. Industrial and Engineering Chemistry Research 2007; 46 (17): 5522-5530. doi: 10.1021/ie070269s
  • 17. Liu D, Yao C, Zhang J, Fang D, Chen D. Catalytic dehydration of methanol to dimethyl ether over modified $γ-Al_2O_3$ catalyst. Fuel 2011; 90 (5): 1738-1742. doi: 10.1016/j.fuel.2011.01.038
  • 18. Xu M, Lunsford JH, Goodman DW, Bhattacharyya A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Applied Catalysis A: General 1997; 149 (2): 289-301. doi: 10.1016/S0926-860X(96)00275-X
  • 19. Ortega C, Rezaei M, Hessel V, Kolb G. Methanol to dimethyl ether conversion over a ZSM-5 catalyst: Intrinsic kinetic study on an external recycle reactor. Chemical Engineering Journal 2018; 347: 741-753. doi: 10.1016/j.cej.2018.04.160
  • 20. Aguayo AT, Ereña J, Sierra I, Olazar M, Bilbao J. Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and $CO_2$. Catalysis Today 2005; 106 (1-4): 265-270. doi: 10.1016/j.cattod.2005.07.144
  • 21. Takeguchi T, Yanagisawa KI, Inui T, Inoue M. Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga and solid acids. Applied Catalysis A: General 2000; 192 (2): 201-209. doi: 10.1016/S0926- 860X(99)00343-9
  • 22. Ghorbanpour A, Rimer JD, Grabow LC. Computational assessment of the dominant factors governing the mechanism of methanol dehydration over H-ZSM-5 with heterogeneous aluminum distribution. ACS Catalysis 2016; 6 (4): 2287-2298. doi: 10.1021/acscatal.5b02367
  • 23. Mei C, Wen P, Liu Z, Liu H, Wang Y et al. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. Journal of Catalysis 2008; 258 (1): 243-249. doi: 10.1016/j.jcat.2008.06.019
  • 24. Ghosh M, Rao CNR. Solvothermal synthesis of CdO and CuO nanocrystals. Chemical Physics Letters 2004; 393 (4-6): 493-497. doi: 10.1016/j.cplett.2004.06.092
  • 25. De Queiroz GA, De Bezerra Barbosa CMM. Study of the structural and morphological properties of copper catalysts supported on $Al_2O_3and TiO_2$ synthesized by the impregnation method. Revista Materia 2019; 24 (1). doi: 10.1590/s1517-707620190001.0605
  • 26. Mateos-Pedrero C, Silva H, Pacheco Tanaka DA, Liguori S, Iulianelli A et al. CuO/ZnO catalysts for methanol steam reforming: The role of the support polarity ratio and surface area. Applied Catalysis B: Environmental 2015; 174-175: 67-76. doi: 10.1016/j.apcatb.2015.02.039
  • 27. Bulánek R, Wichterlová B, Sobalík Z, Tichý J. Reducibility and oxidation activity of Cu ions in zeolites effect of Cu ion coordination and zeolite framework composition. Applied Catalysis B: Environmental 2001; 31 (1): 13-25. doi: 10.1016/S0926-3373(00)00268-X
  • 28. Shao CT, Lang WZ, Yan X, Guo YJ. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: effects of support and loading amount. RSC Advances 2017; 7 (8): 4710-4723. doi: 10.1039/c6ra27204e
  • 29. Gao Q, Han S, Ye Q, Cheng S, Kang T, Dai H. Effects of lanthanide doping on the catalytic activity and hydrothermal stability of CuSAPO-18 for the catalytic removal of NOx (NH3-SCR) from diesel engines. Catalysts 2020; 10: 336-353. doi: 10.3390/catal10030336
  • 30. Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed $CO_2$ hydrogenation processes. Chemical Reviews 2017; 117 (14): 9804-9838. doi:10.1021/acs.chemrev.6b00816
  • 31. Frusteri F, Bonura G, Cannilla C, Ferrante GD, Aloise A et al. Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybridcatalysts for the direct DME synthesis by $CO_2$ hydrogenation. Applied Catalysis B: Environmental 2015; 176-177: 522-531. doi: 10.1016/j. apcatb.2015.04.032
  • 32. Bonura G, Migliori M, Frusteri L, Cannilla C, Catizzone E et al. Acidity control of zeolite functionality on activity and stability of hybrid catalysts during DME production via $CO_2$ hydrogenation. Journal of $CO_2$ Utilization 2018; 24: 398-406. doi: 10.1016/j.jcou.2018.01.028
  • 33. Despres J, Koebel M, Kröcher O, Elsener M, Wokaun A. Adsorption and desorption of NO and $NO_2$ on Cu-ZSM-5. Microporous and Mesoporous Materials 2003; 58 (2): 175-183. doi: 10.1016/S1387-1811(02)00627-3
  • 34. Dai WL, Sun Q, Deng JF, Wu D, Sun YH. XPS studies of $Cu/ZnO/Al_2O_3$ ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by $CO_2+H_2$. Applied Surface Science 2001; 177 (3): 172-179. doi: 10.1016/S0169-4332(01)00229-X
  • 35. Surdu-Bob CC, Saied SO, Sullivan JL. An X-ray photoelectron spectroscopy study of the oxides of GaAs. Applied Surface Science 2001; 183 (1-2): 126-136. doi: 10.1016/S0169-4332(01)00583-9
  • 36. Kang ZJ, Li LP, Wei Q. An XPS study of perovskite oxides RECrO3. Chemical Research in Chinese Universities 1996; 12 (3): 280-284.
  • 37. Wang L, Yi Y, Guo H, Tu X. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenationof $CO_2$. ACS Catalysis 2018; 8 (1): 90-100. doi: 10.1021/acscatal.7b02733
  • 38. Perry S, Perry RH, Green DW, Maloney JO. Perry’s Chemical Engineers’ Handbook. New York, NY, USA: McGraw-Hill, 2000.
APA Tuygun C, Ipek B (2021). $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. , 231 - 247. 10.3906/kim-2009-66
Chicago Tuygun Cansu,Ipek Bahar $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. (2021): 231 - 247. 10.3906/kim-2009-66
MLA Tuygun Cansu,Ipek Bahar $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. , 2021, ss.231 - 247. 10.3906/kim-2009-66
AMA Tuygun C,Ipek B $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. . 2021; 231 - 247. 10.3906/kim-2009-66
Vancouver Tuygun C,Ipek B $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. . 2021; 231 - 247. 10.3906/kim-2009-66
IEEE Tuygun C,Ipek B "$CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis." , ss.231 - 247, 2021. 10.3906/kim-2009-66
ISNAD Tuygun, Cansu - Ipek, Bahar. "$CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis". (2021), 231-247. https://doi.org/10.3906/kim-2009-66
APA Tuygun C, Ipek B (2021). $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. Turkish Journal of Chemistry, 45(1), 231 - 247. 10.3906/kim-2009-66
Chicago Tuygun Cansu,Ipek Bahar $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. Turkish Journal of Chemistry 45, no.1 (2021): 231 - 247. 10.3906/kim-2009-66
MLA Tuygun Cansu,Ipek Bahar $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. Turkish Journal of Chemistry, vol.45, no.1, 2021, ss.231 - 247. 10.3906/kim-2009-66
AMA Tuygun C,Ipek B $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. Turkish Journal of Chemistry. 2021; 45(1): 231 - 247. 10.3906/kim-2009-66
Vancouver Tuygun C,Ipek B $CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis. Turkish Journal of Chemistry. 2021; 45(1): 231 - 247. 10.3906/kim-2009-66
IEEE Tuygun C,Ipek B "$CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis." Turkish Journal of Chemistry, 45, ss.231 - 247, 2021. 10.3906/kim-2009-66
ISNAD Tuygun, Cansu - Ipek, Bahar. "$CO_2$ hydrogenation to methanol and dimethyl ether at atmospheric pressure using $Cu-Ho-Ga/γ–Al_2 O_3 and Cu-Ho-Ga/ZSM-5$: Experimental study and thermodynamicanalysis". Turkish Journal of Chemistry 45/1 (2021), 231-247. https://doi.org/10.3906/kim-2009-66