Yıl: 2021 Cilt: 45 Sayı: 3 Sayfa Aralığı: 528 - 539 Metin Dili: İngilizce DOI: 10.3906/kim-2009-37 İndeks Tarihi: 28-06-2022

Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors

Öz:
Cancer is a disease characterized by the continuous growth of cells without adherence to the rules that healthy normal cells obey. Carbonic anhydrase I and II (CA I and CA II) inhibitors are used for the treatment of some diseases. The available drugs in the market have limitations or side effects, which bring about the need to develop new drug candidate compound(s) to overcome the problems at issue. In this study, new pyrazole-sulphonamide hybrid compounds 4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-1Hpyrazol-1-yl]benzenesulphonamides (4a - 4j) were designed to discover new drug candidate compounds. The compounds 4a - 4j were synthesized and their chemical structures were confirmed using spectral techniques. The hypothesis tested was whether an introduction of methoxy and polymethoxy group(s) lead to an increased potency selectivity expression (PSE) value of the compound, which reflects cytotoxicity and selectivity of the compounds. The cytotoxicity of the compounds towards tumor cell lines were in the range of 6.7 –400 µM. The compounds 4i $(PSE_2 = 461.5)$ and 4g $(PSE_1 = 193.2)$ had the highest PSE values in cytotoxicity assays. Ki values of the compounds were in the range of 59.8 ± 3.0 - 12.7 ± 1.7 nM towards hCA I and in the range of 24.1 ± 7.1 - 6.9 ± 1.5 nM towards hCA II. While the compounds 4b, 4f, 4g, and 4i showed promising cytotoxic effects, the compounds 4c and 4g had the inhibitory potency towards hCA I and hCA II, respectively. These compounds can be considered as lead compounds for further research.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Rizzoli R, Body JJ, Brandi ML, Cannata-Andia J, Chappard D et al. Cancer-associated bone disease. Osteoporosis International 2013; 24 (12): 2929-2953. doi: 10.1007/s00198-013-2530-3
  • 2. Prathumsap N, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Effects of doxorubicin on the heart: from molecular mechanisms to intervention strategies. European Journal of Pharmacology 2020; 866: 172818. doi: 10.1016/j.ejphar.2019.172818
  • 3. Dai J, Chen Y, Gong Y, Gu D, Chen J. Association of microRNA-27a rs895819 polymorphism with the risk of cancer: an updated metaanalysis. Gene 2020; 728: 144185. doi: 10.1016/j.gene.2019.144185
  • 4. Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C et al. Therapeutic emergence of rhein as a potential anticancer drug: a review of its molecular targets and anticancer properties. Molecules 2020; 25 (10): 2278. doi: 10.3390/molecules25102278
  • 5. Ferlay J, Shin HR, Bray F, Forman D, Mathers C et al. Estimates of worldwide burden of cancer in 2008. International Journal of Cancer 2010; 127: 2893-2917. doi: 10.1002/ijc.25516
  • 6. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncology 2009; 45: 309-316. doi: 10.1016/j. oraloncology.2008.06.002
  • 7. Prakash J, Vedanayaki S. In-vitro cytotoxicity studies of methanolic bulb Extract of Zephyranthes Citrina on cervical cancer (Hela), breast cancer (MCF-7) and oral cancer (SCC-9). Journal of Pharmaceutical Science and Research 2019; 11 (6): 2353-2356.
  • 8. Weber M, Wehrhan F, Baran C, Agaimy A, Büttner-Herold M et al. Malignant transformation of oral leukoplakia is associated with macrophage polarization. Journal of Translational Medicine 2020; 18: 11. doi: 10.1186/s12967-019-02191-0
  • 9. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM et al. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of Oral Pathology and Medicine 1995; 24: 450-453. doi: 10.1111/j.1600-0714.1995.tb01132.x
  • 10. Lin WJ, Jiang RS, Wu SH, Chen FJ, Liu SA. Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study. Journal of Oncology 2011; 525976. doi: 10.1155/2011/525976
  • 11. Zolnowska B, Slawinski J, Pogorzelska A, Szafranski K, Kawia A et al. Synthesis, QSAR studies, and metabolic stability of novel 2-alkylthio4-chloro-N-(5-oxo-4,5-dihydro-1,2,4-triazin-3-yl)benzenesulfonamide derivatives as potential anticancer and apoptosis-inducing agents. Chemical Biology Drug Design 2017; 90: 380-396. doi: 10.1111/cbdd.12955
  • 12. Gul HI, Tugrak M, Sakagami H, Taslimi P, Gulcin I et al. Synthesis and bioactivity studies on new 4-(3-(4-Substitutedphenyl)-3a,4- dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry 2016; 31: 1619- 1624. doi: 10.3109/14756366.2016.1160077
  • 13. Kucukoglu K, Oral F, Aydin T, Yamali C, Algul O et al. Synthesis, cytotoxicity and carbonic anhydrase inhibitory activities of new pyrazolines. Journal of Enzyme Inhibition and Medicinal Chemistry 2016; 31: 20-24. doi: 10.1080/14756366.2016.1217852
  • 14. Gul HI, Yamali C, Yesilyurt F, Sakagami H, Kucukoglu K et al. Microwave-assisted synthesis and bioevaluation of new sulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry 2017; 32: 369-374. doi: 10.1080/14756366.2016.1254207
  • 15. Gul HI, Yamali C, Sakagami H, Angeli A, Leitans J et al. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorganic Chemistry 2018; 77: 411-419. doi: 10.1016/j.bioorg.2018.01.021
  • 16. Ozgun DO, Gul HI, Yamali C, Sakagami H, Gulcin I et al. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorganic Chemistry 2019; 84: 511-517. doi: 10.1016/j.bioorg.2018.12.028
  • 17. Yamali C, Ozgun DO, Gul HI, Sakagami H, Kazaz C et al. Synthesis and structure elucidation of 1-(2,5/3,5-difluorophenyl)-3- (2,3/2,4/2,5/3,4-dimethoxyphenyl)-2-propen-1-ones as anticancer agents. Medicinal Chemistry Research 2017; 26: 2015-2023. doi: 10.1007/s00044-017-1911-0
  • 18. Gul HI, Yamali C, Gunesacar G, Sakagami H, Okudaira N et al. Cytotoxicity, apoptosis, and QSAR studies of phenothiazine derived methoxylated chalcones as anticancer drug candidates. Medicinal Chemistry Research 2018; 27: 2366-2378. doi: 10.1007/s00044-018- 2242-5
  • 19. Matera C, Flammini L, Riefolo F, Domenichini G, De Amici M et al. Novel analgesic agents obtained by molecular hybridization of orthosteric and allosteric ligands. Europen Journal of Pharmacology 2020; 876: 173061. doi: 10.1016/j.ejphar.2020.173061
  • 20. Erdemir F, Celepci DB, Aktas A, Gok Y, Kaya R et al. Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: synthesis, characterization, crystal structure and bioactivity properties. Bioorganic Chemistry 2019; 91: 103134. doi: 10.1016/j.bioorg.2019.103134
  • 21. Bayindir S, Caglayan C, Karaman M,Gulcin I. The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorganic Chemistry 2019; 90: 103096. doi: 10.1016/j. bioorg.2019.103096
  • 22. Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opinion Drug Discovery 2017; 12: 61-88. doi: 10.1080/17460441.2017.1253677
  • 23. Boztas M, Taslimi P, Yavari MA, Gulcin I, Sahin E et al. Synthesis and biological evaluation of bromophenol derivatives with cyclopropyl moiety: ring opening of cyclopropane with monoester. Bioorganic Chemistry 2019; 89: 103017. doi: 10.1016/j.bioorg.2019.103017
  • 24. Atmaca U, Kaya R, Karaman HS, Celik M,Gulcin I. Synthesis of oxazolidinone from enantiomerically enriched allylic alcohols and determination of their molecular docking and biologic activities. Bioorganic Chemistry 2019; 88: 102980. doi: 10.1016/j.bioorg.2019.102980
  • 25. Turkan F, Cetin A, Taslimi P, Karaman M, Gulcin I. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorganic Chemistry 2019; 86: 420-427. doi: 10.1016/j.bioorg.2019.02.013
  • 26. Supuran CT. Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for $CO_2$ capture. Journal of Enzyme Inhibition and Medicinal Chemistry 2013; 28: 229-230. doi: 10.3109/14756366.2013.761876
  • 27. Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? Journal of Enzyme Inhibition and Medicinal Chemistry 2016; 31: 345-360. doi: 10.3109/14756366.2015.1122001
  • 28. Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chemical Reviews 2012; 112: 4421-4468. doi: 10.1021/cr200176r
  • 29. Abbate F, Winum JY, Potter BV, Casini A, Montero JL et al. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with EMATE, a dual inhibitor of carbonic anhydrases and steroid sulfatase. Bioorganic and Medicinal Chemistry Letters 2004; 14: 231-234. doi: 10.1016/j.bmcl.2003.09.064
  • 30. Carta F, Supuran CT. Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005-2013). Expert Opinion Therapeutic Patent 2013; 23: 681-691. doi: 10.1517/13543776.2013.780598
  • 31. Masini E, Carta F, Scozzafava A, Supuran CT. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opinion Therapeutic Patent 2013; 23: 705-716. doi: 10.1517/13543776.2013.794788
  • 32. Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opinion Therapeutic Patent 2013; 23: 725-735. doi: 10.1517/13543776.2013.790957
  • 33. Supuran CT. Carbonic anhydrases and metabolism. Metabolites. 2018; 8 (2): 25. doi: 10.3390/metabo8020025
  • 34. Monti SM, Supuran CT, De Simone G. Anticancer carbonic anhydrase inhibitors: a patent review (2008-2013). Expert Opinion Therapeutic Patent 2013; 23: 737-749. doi: 10.1517/13543776.2013.798648
  • 35. Casey JR, Morgan PE, Vullo D, Scozzafava A, Mastrolorenzo A et al. Carbonic anhydrase inhibitors. Design of selective, membraneimpermeant inhibitors targeting the human tumor-associated isozyme IX. Journal of Medicinal Chemistry 2004; 47: 2337-2347. doi: 10.1021/jm031079w
  • 36. Supuran CT. Carbonic anhydrase inhibition and the management of neuropathic. Expert Review Neurotherapeutic 2016; 16: 961-968. doi: 10.1080/14737175.2016.1193009
  • 37. Bua S, Di Cesare Mannelli L, Vullo D, Ghelardini C, Bartolucci G et al. Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs-CAIs) for the treatment of rheumatoid arthritis. Journal of Medicinal Chemistry 2017; 60: 1159-1170. doi: 10.1021/acs.jmedchem.6b01607
  • 38. Supuran CT. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 2017; 7 (3): 48. doi: 10.3390/ metabo7030048.
  • 39. Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opinion Therapeutic Targets 2015; 19 (12): 1689-1704. doi: 10.1517/14728222.2015.1067685.
  • 40. Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? Journal of Enzyme Inhibition and Medicinal Chemistry 2015; 30: 325-332. doi: 10.3109/14756366.2014.910202
  • 41. Nocentini A, Cadoni R, Dumy P, Supuran CT, Winum JY. Carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani chagasi are inhibited by benzoxaboroles. Journal of Enzyme Inhibition and Medicinal Chemistry 2018; 33: 286-289. doi: 10.1080/14756366.2017.1414808
  • 42. Tugrak M, Gul HI, Sakagami H, Gulcin I, Supuran CT. New azafluorenones with cytotoxic and carbonic anhydrase inhibitory properties: 2-aryl-4-(4-hydroxyphenyl)-5H-indeno[1,2-b]pyridin-5-ones. Bioorganic Chemistry 2018; 81: 433-439. doi: 10.1016/j.bioorg.2018.09.013
  • 43. Luo Y, Zhang S, Qiu KM, Liu ZJ, Yang YS et al. Synthesis, biological evaluation, 3D-QSAR studies of novel aryl-2H-pyrazole derivatives as telomerase inhibitors. Bioorganic and Medicinal Chemistry Letters 2013; 23: 1091. doi: 10.1016/j.bmcl.2012.12.010
  • 44. Lin Z, Wang Z, Zhou X, Zhang M, Gao D et al. Discovery of new fluorescent thiazole-pyrazoline derivatives as autophagy inducers by inhibiting mTOR activity in A549 human lung cancer cells. Cell Death and Disease 2020; 11: 551. doi: 10.1038/s41419-020-02746-w
  • 45. Yan XQ, Wang ZC, Zhang B, Qi PF, Li GG et al. Dihydropyrazole derivatives containing benzo oxygen heterocycle and sulfonamide moieties selectively and potently inhibit COX-2: design, synthesis, and anti-colon cancer activity evaluation. Molecules 2019; 24 (9): 1685. doi: 10.3390/molecules24091685.
  • 46. Yaeghoobi M, Frimayanti N, Chee CF, Ikram KK, Najjar BO et al. QSAR, in silico docking and in vitro evaluation of chalcone derivatives as potential inhibitors for H1N1 virus neuraminidase. Medicinal Chemistry Research 2016; 25: 2133. doi: 10.1007/s00044-016-1636-5
  • 47. Masoud DM, Azzam RA, Hamdy F, Mekawey AAI, Abdel-Aziz HA. Synthesis of some novel pyrazoline-thiazole hybrids and their antimicrobial activities. Journal of Heterocyclic Chemistry 2019; 56: 3030. doi: 10.1002/jhet.3698
  • 48. Ruparelia KC, Lodhi S, Ankrett DN, Wilsher NE, Arroo RRJ et al. The synthesis of 4,6-diaryl-2-pyridones and their bioactivation in CYP1 expressing breast cancer cells. Bioorganic and Medicinal Chemistry Letters 2019; 29: 1403. doi: 10.1016/j.bmcl.2019.03.030
  • 49. Chiaradia LD, Martins PGA, Cordeiro MNS, Guido RVC, Ecco G et al. Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB). Journal of Medicinal Chemistry 2012; 55: 390. doi: 10.1021/jm2012062
  • 50. Mete E, Comez B, Gul HI, Gulcin I, Supuran CT. Synthesis and carbonic anhydrase inhibitory activities of new thienyl-substituted pyrazoline benzenesulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry 2016; 31: 1-5. doi: 10.1080/14756366.2016.1181627
  • 51. Gul HI, Mete E, Eren SE, Sakagami H, Yamali C et al. Designing, synthesis and bioactivities of 4-[3-(4-hydroxyphenyl)-5-aryl4,5-dihydro-pyrazol-1-yl]benzenesulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry 2017; 32: 169-175. doi: 10.1080/14756366.2016.1243536
  • 52. Basaif SA, Albar HA, Faidallah HM. Synthesis of new pyrazoline and pyrazole derivatives. Indian Journal of Heterocyclic Chemistry 199; 5: 121.
  • 53. McDowell SA, Sammelson RE, Sklar LA, Haynes MK. Methods for treating bacterial infection, U.S. Pat. Appl. Publ., 2018. 54. Tugrak M, Gul HI, Bandow K, Sakagami H, Gulcin I et al. Synthesis and biological evaluation of some new mono Mannich bases with piperazines as possible anticancer agents and carbonic anhydrase inhibitors. Bioorganic Chemistry 2019; 90: 103095. doi: 10.1016/j. bioorg.2019.103095
  • 55. Gul HI, Tugrak M, Gul M, Mazlumoglu S, Sakagami H et al. New phenolic Mannich bases with piperazines and their bioactivities. Bioorganic Chemistry 2019; 90: 103057. doi: 10.1016/j.bioorg.2019.103057
  • 56. Gul HI, Tugrak M, Gul M, Sakagami H Umemura N et al. Synthesis and cytotoxicities of new azafluorenones with apoptotic mechanism of action and cell cycle analysis. Anti-cancer Agents and Medicinal Chemistry 2018; 18: 1770-1778. doi: 10.2174/18715206186661805250 85445
  • 57. Kocyigit UM, Budak Y, Gurdere MB, Tekin S, Koprulu TK et al. Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole1,3(2H)-dione derivatives. Bioorganic Chemistry 2017; 70: 118. doi: 10.1016/j.bioorg.2016.12.001
  • 58. Taslimi P, Sujayev A, Mamedova S, Kalin P, Gulcin I et al. Synthesis and bioactivity of several new hetaryl sulfonamides. Journal of Enzyme Inhibition Medicinal Chemistry 2017; 32: 137. doi: 10.1080/14756366.2016.1238367
  • 59. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976; 72: 248. doi: 10.1016/0003-2697(76)90527-3
  • 60. Verpoorte JA, Mehta S, Edsall JT. Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry 1967; 242: 4221.
  • 61. Senturk M,Gulcin I, Dastan A, Kufrevioglu OI, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorganic and Medicinal Chemistry 2009; 17: 3207. doi: 10.1016/j.bmc.2009.01.067
  • 62. Akincioglu A, Akbaba Y, Gocer H, Goksu S, Gulcin I et al. Novel sulfamides as potential carbonic anhydrase isoenzymes inhibitors. Bioorganic and Medicinal Chemistry 2013; 21: 1379. doi: 10.1016/j.bmc.2013.01.019
  • 63. Aksu K, Nar M, Tanc M, Vullo D, Gulcin I et al. Synthesis and carbonic anhydrase inhibitory properties of sulfamides structurally related to dopamine. Bioorganic and Medicinal Chemistry 2013; 21: 2925. doi: 10.1016/j.bmc.2013.03.077
  • 64. Guney M, Coskun A, Topal F, Dastan A, Gulcin I et al. Oxidation of cyanobenzocycloheptatrienes: synthesis, photooxygenation reaction and carbonic anhydrase isoenzymes inhibition properties of some new benzotropone derivatives. Bioorganic and Medicinal Chemistry 2014; 22: 3537. doi: 10.1016/j.bmc.2014.04.007
  • 65. Lineweaver H, Burk D. The determination of enzyme dissociation constants. Journal of the American Chemical Society 1934; 56: 658. doi: 10.1021/ja01318a036
APA Tuğrak Sakarya M, Gul H, Sakagami H, Sağlamtaş R, Gulcin i (2021). Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. , 528 - 539. 10.3906/kim-2009-37
Chicago Tuğrak Sakarya Mehtap,Gul Halise Inci,Sakagami Hiroshi,Sağlamtaş Rüya,Gulcin ilhami Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. (2021): 528 - 539. 10.3906/kim-2009-37
MLA Tuğrak Sakarya Mehtap,Gul Halise Inci,Sakagami Hiroshi,Sağlamtaş Rüya,Gulcin ilhami Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. , 2021, ss.528 - 539. 10.3906/kim-2009-37
AMA Tuğrak Sakarya M,Gul H,Sakagami H,Sağlamtaş R,Gulcin i Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. . 2021; 528 - 539. 10.3906/kim-2009-37
Vancouver Tuğrak Sakarya M,Gul H,Sakagami H,Sağlamtaş R,Gulcin i Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. . 2021; 528 - 539. 10.3906/kim-2009-37
IEEE Tuğrak Sakarya M,Gul H,Sakagami H,Sağlamtaş R,Gulcin i "Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors." , ss.528 - 539, 2021. 10.3906/kim-2009-37
ISNAD Tuğrak Sakarya, Mehtap vd. "Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors". (2021), 528-539. https://doi.org/10.3906/kim-2009-37
APA Tuğrak Sakarya M, Gul H, Sakagami H, Sağlamtaş R, Gulcin i (2021). Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. Turkish Journal of Chemistry, 45(3), 528 - 539. 10.3906/kim-2009-37
Chicago Tuğrak Sakarya Mehtap,Gul Halise Inci,Sakagami Hiroshi,Sağlamtaş Rüya,Gulcin ilhami Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. Turkish Journal of Chemistry 45, no.3 (2021): 528 - 539. 10.3906/kim-2009-37
MLA Tuğrak Sakarya Mehtap,Gul Halise Inci,Sakagami Hiroshi,Sağlamtaş Rüya,Gulcin ilhami Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. Turkish Journal of Chemistry, vol.45, no.3, 2021, ss.528 - 539. 10.3906/kim-2009-37
AMA Tuğrak Sakarya M,Gul H,Sakagami H,Sağlamtaş R,Gulcin i Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. Turkish Journal of Chemistry. 2021; 45(3): 528 - 539. 10.3906/kim-2009-37
Vancouver Tuğrak Sakarya M,Gul H,Sakagami H,Sağlamtaş R,Gulcin i Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. Turkish Journal of Chemistry. 2021; 45(3): 528 - 539. 10.3906/kim-2009-37
IEEE Tuğrak Sakarya M,Gul H,Sakagami H,Sağlamtaş R,Gulcin i "Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors." Turkish Journal of Chemistry, 45, ss.528 - 539, 2021. 10.3906/kim-2009-37
ISNAD Tuğrak Sakarya, Mehtap vd. "Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors". Turkish Journal of Chemistry 45/3 (2021), 528-539. https://doi.org/10.3906/kim-2009-37