Yıl: 2021 Cilt: 45 Sayı: 3 Sayfa Aralığı: 694 - 703 Metin Dili: İngilizce DOI: 10.3906/kim-2010-1 İndeks Tarihi: 28-06-2022

Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells

Öz:
Photovoltaic technology is an alternative resource for renewable and sustainable energy and low costs organic photovoltaic devices such as bulk-heterojunction (BHJ) solar cells, which are selective candidates for the effective conversion of solar energy into electricity. Asymmetric phthalocyanines containing electron acceptor and donor groups create high photovoltaic conversion efficiency in dye sensitized solar cells. In this study, a new unsymmetrical zinc phthalocyanine was designed and synthesized including thiophene and amine groups at peripherally positions for BHJ solar cell. The structure of the targeted compound (4) was characterized comprehensively by FT-IR, UV–Vis, $^1 H-NMR$, and MALDI-TOF MS spectroscopies. The potential of this compound in bulk heterojunction (BHJ) photovoltaic devices as donor was also researched as function of blend ratio (blend ratio was varied from 0.5 to 4). For this purpose, a series of BHJ devices with the structure of fluorine doped indium tin oxide (FTO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ ZnPc:[6,6]- phenyl-C61- butyric acid methyl ester (PCBM) blend/Al with identical thickness of ZnPc:PCBM layer were fabricated and characterized. Photo current measurements in 4 revealed that the observed photo current maximum is consistent with UV-vis spectra of the compound of 4. Preliminary studies showed that the blend ratio has a critical effect on the BHJ device performance parameters. Photovoltaic conversion efficiency of 6.14% was achieved with 4 based BHJ device.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Li N, Baran D, Spyropoulos GD, Zhang H, Berny S et al. Environmentally printing efficient organic tandem solar cells with high fill factors: a guideline towards 20% power conversion efficiency. Advanced Energy Materials 2014; 4 (11): 1-7. doi:10.1002/aenm.201400084
  • 2. Rossander LH, Zawacka NK, Dam HF, Krebs FC, Andreasen J. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating. AIP Advances 2014; 4 (8): 1-8. doi:10.1063/1.4892526
  • 3. Scharber MC, Sariciftci NS. Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science 2013; 38 (12): 1929-1940. doi: 10.1016/j.progpolymsci.2013.05.001
  • 4. Irwin MD, Buchholz B, Hains AW, Chang RPH, Marks TJ. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences 2008; 105 (8): 2783-2787. doi:10.1073/pnas.0711990105
  • 5. Itoh E, Maruyama Y, Fukuda K. Photovoltaic properties of bulk-heterojunction organic solar cell with ultrathin titanium oxide nanosheet as electron selective layer. Japanese Journal of Applied Physics 2013; 52 (4). doi: 04CK05. 10.7567/JJAP.52.04CK05
  • 6. Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, De Boer B et al. Compositional dependence of the performance of poly(pphenylene vinylene):methanofullerene bulk-heterojunction solar cells. Advanced Energy Materials 2005; 15 (5), 795-801. doi: 10.1002/ adfm.200400345
  • 7. Ren BY, Ou CJ, Zhang C, Chang YZ, Yi MD et al. Diarylfluorene-modified fulleropyrrolidine acceptors to tune aggregate morphology for solution-processable polymer/fullerene bulk-heterojunction solar cells. The Journal of Physical Chemistry C 2012; 116 (16): 8881-8887. doi: 10.1021/jp212254g
  • 8. Scharber MC, Wuhlbacher D, Koppe M., Denk P, Waldauf C et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Advanced Materials 2006; 18 (6): 789-794. doi: 10.1002/adma.200501717
  • 9. Liu Y, Zhao J, Li Z, Mu C, Ma W et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications 2014, 5: 1-8. doi: 10.1038/ncomms6293
  • 10. Brabec CJ, S Gowrisanker, Halls JJM, Laird D, Jia SJ et al. Polymer-fullerene bulk-heterojunction solar cells. Advanced Materials 2010; 22 (34): 3839-3856. doi: 10.1002/adma.200903697
  • 11. Li G, Zhu R, Yang Y. Polymer solar cells. Nature Photon 2012; 6: 153-161. doi: 10.1038/nphoton.2012.11
  • 12. He ZC, Zhong CM, Su SJ, Xu M, Wu HB et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics 2012; 6 (9): 591-595. doi: 10.1038/nphoton.2012.190
  • 13. Darling SB, You F. The case for organic photovoltaics. Royal Society of Chemistry Advances 2013; 3 (39): 17633-17648. Doi: 10.1039/ C3RA42123F
  • 14. JB You, Dou L, Yoshimura K, Kato T, Ohya K et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications 2013; 4: 1-10. doi: 10.1038/ncomms2411
  • 15. Liang Y, Yu L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Accounts of Chemical Research 2010; 43 (9): 1227-1236. doi: 10.1021/ar1000296
  • 16. Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-heterojunction solar cells. Advanced Materials 2009; 21 (13): 1323-1338. doi: 10.1002/adma.200801283
  • 17. a) Dang MT, Hirsch L, Wantz G. P3HT:PCBM, Best seller in polymer photovoltaic research. Advanced Materials 2011; 23 (31): 3597-3602. doi: 10.1002/adma.201100792 b) Patil Y, Misra R, Singhal R, Sharma GD. Ferrocene-diketopyrrolopyrrole based non-fullerene acceptors for bulk heterojunction polymer solar cells. Journal of Materials Chemistry A 2017; 5: 13625-13633. doi: 10.1039/C7TA03322B
  • 18. Choy WCH. Organic Solar Cells. London; New York: Springer-Verlag, 2013.
  • 19. Abdullah SM, Ahmad Z, Aziz F, Sulaiman K et al. Investigation of VOPcPhO as an acceptor material for bulk heterojunction solar cells. Organic Electronics 2012, 13 (11): 2532-2537. doi: 10.1016/j.orgel.2012.07.030
  • 20. Sánchez-Díaz A, Pacios R, Muñecas U, Torres T, Palomares E. Charge transfer reactions in near IR absorbing small molecule solution processed organic bulk-heterojunction solar. Organic Electronics 2011, 12 (2): 329-335. doi: 10.1016/j.orgel.2010.11.014
  • 21. Smestad GP, Krebs FC, Lampert CM, Granqvist CG, Chopra KL et al. Reporting solar cell efficiencies in solar energy materials and solar cells. Solar Energy Materials and Solar Cells 2008; 92 (4): 371-373. doi: 10.1016/j.solmat.2008.01.003
  • 22. Campo BJ, Duchateau J, Ganivet CR, Ballesteros B, Gilot J et al. Broadening the absorption of conjugated polymers by “click” functionalization with phthalocyanines. Dalton Transactions 2011;40 (15): 3979-3988. doi: 10.1039/C0DT01348J
  • 23. Roncali J. Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chemical Reviews 1992; 92 (4): 711-738. doi: 10.1021/cr00012a009
  • 24. Muto T, Temma T, Kimura M, Hanabusa K, Shirai H. Elongation of the π-System of phthalocyanines by introduction of thienyl substituents at the peripheral β positions. synthesis and characterization. The Journal of Organic Chemistry 2001; 66 (18): 6109-6115. doi: 10.1021/ jo010384r
  • 25. Keser Karaoglan G, Gümrükçü G, Koca A, Gül A, Avcıata U. Synthesis and characterization of novel soluble phthalocyanines with fused conjugated unsaturated groups. Dyes Pigments 2011; 90 (1): 11-20. doi: 10.1016/j.dyepig.2010.10.002
  • 26. Popović D, Ata I, Krantz J, Lucas S, Lindén M et al. Preparation of efficient oligomer-based bulk-heterojunction solar cells from ecofriendly solvents. Journal of Materials Chemistry C 2017; 5 (38): 9920-9928. doi:10.1039/C7TC02131C
  • 27. Chen X, Liu X, Burgers MA, Huang Y, Bazan GC. Green-solvent-processed molecular solar cells. Angewandte Chemie International Edition 2014, 53 (52): 14378-14381. doi: 10.1002/anie.201409208
  • 28. Farahat ME, Tsao CS, Huang YC, Chang SH. Budiawan W et al. Toward environmentally compatible molecular solar cells processed from halogen-free solvents. Journal of Materials Chemistry A 2016, 4, 7341-7351. doi: 10.1039/C6TA01368F
  • 29. Xiao L, Liu C, Gao K, Yan Y, Peng J et al. Highly efficient small molecule solar cells fabricated with non-halogenated solvents. Royal Society of Chemistry 2015; 5 (112): 92312-92317. doi: 10.1039/C5RA19054A
  • 30. Goktug O, Soganci T, Ak M, Sener MK. Efficient synthesis of EDOT modified ABBB-type unsymmetrical zinc phthalocyanine: optoelectrochromic and glucose sensing properties of its copolymerized film. New Journal of Chemistry 2017; 41 (23): 14080-14087. doi: 10.1039/C7NJ03250A
  • 31. Ceylan N, Gümrükçü G, Keser Karaoglan G, Gül A. Synthesis, characterization, fluorescence spectra and energy transfer properties of a novel unsymmetrical zinc phthalocyanine with peripherally coordinated Ru(II) complex Synthetic Metals 2015; 206, 55-60. doi: 10.1016/j. synthmet.2015.05.013
  • 32. Powroźnik P, Krzywiecki M, Grządziel L, Jakubik W. Study of sensing mechanisms in nerve agent sensors based on phthalocyaninepalladium structures. Procedia Engineering 2016; 168, 586-589. doi: 10.1016/j.proeng.2016.11.220
  • 33. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005; 4 (11), 864-868. doi: 10.1038/nmat1500
  • 34. Kadem B, Hassan A. The effect of fullerene derivatives ratio on P3HT-based organic solar cells. Energy Procedia 2015; 74, 439-445. doi: 10.1016/j.egypro.2015.07.647
  • 35. Ma W, Yang C, Gong X, Lee K, Heeger AJ. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials 2005; 15 (10), 1617-1622. doi: 10.1002/adfm.200500211
  • 36. Lange I, Kniepert J, Pingel P, Dumsch I, Allard S et al. Correlation between the open circuit voltage and the energetics of organic bulk heterojunction solar cells. Journal Of Physical Chemistry Letters 2013; 4 (22), 3865-3871. doi: 10.1021/jz401971e
  • 37. Rand BP, Burk DP, Forrest SR. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Physical Review B 2007; 75 (11), 115327. doi: 10.1103/PhysRevB.75.115327
  • 38. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C et al. Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials 2006; 18 (6), 789-794. doi: 10.1002/adma.200501717
  • 39. Mihailetchi VD, Blom PWM, Hummelen JC, Rispens MT. Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. Journal of Applied Physics 2003; 94 (10), 6849-6854. doi: 10.1063/1.1620683
  • 40. Altun S, Odabaş Z, Altındal A, Özkaya AR. Coumarin-substituted manganese phthalocyanines: synthesis, characterization, photovoltaic behaviour, spectral and electrochemical properties. Dalton Transactions 2014; 43 (21), 7987-7997. doi: 10.1039/c4dt00482e
  • 41. Blakesley JC, Neher D. Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Physical Review B 2011; 84 (7), 075210. doi: 10.1103/PhysRevB.84.075210
  • 42. Collins SD, Proctor CM, Ran NA, Nguyen TQ. Understanding open-circuit voltage loss through the density of states in organic bulk heterojunction solar cells. Advanced Energy Materials 2016; 6 (4), 1-11. doi: 10.1002/aenm.201501721
  • 43. Müller C, Ferenczi TAM, Campoy-Quiles M, Frost JM, Bradley DDC et al. Binary organic photovoltaic blends: A simple rationale for optimum compositions. Advanced Materials 2008; 20 (18), 3510-3515. doi: 10.1002/adma.200800963
  • 44. Baumann A, Lorrmann J, Deibel C, Dyakonov V. Bipolar charge transport in poly(3-hexyl thiophene)/methanofullerene blends: a ratio dependent study. Applied Physics Letters 2008; 93 (25): 252104-252106. doi: 10.1063/1.3055608
  • 45. Szarko JM, Rolczynski BS, Lou SJ, Xu T, Strzalka J et al. Photovoltaic function and exciton/charge transfer dynamics in a highly efficient semiconducting copolymer. Advanced Functional Materials 2014, 24 (1): 10-26. doi: 10.1002/adfm.201301820
  • 46. Nuzzo DD, Koster LJA, Gevaerts VS, Meskers SCJ, Janssen RAJ. The role of photon energy in free charge generation in bulk heterojunction solar cells. Advanced Energy Materials 2014; 4 (18): 1400416. doi: 10.1002/aenm.201400416
  • 47. Chen XK, Ravva MK, Li H, Ryno SM, Bredas JL. Effect of molecular packing and charge delocalization on the nonradiative recombination of charge-transfer states in organic solar cells. Advanced Energy Materials 2016; 6 (24): 1601325. doi: 10.1002/aenm.201601325
  • 48. Ryno SM, Ravva MK, Chen X, Li H, Breda JL. Molecular understanding of fullerene – electron donor interactions in organic solar cells. Advanced Energy Materials 2017; 7 (10): 1601370. doi: 10.1002/aenm.201601370
  • 49. Arndt AP, Gerhard M, Quintilla A, Howard IA, Koch M et al. Time-resolved charge-transfer state emission in organic solar cells: temperature and blend composition dependences of interfacial traps. The Journal of Physical Chemistry C 2015; 119 (24): 13516-13523. doi: 10.1021/acs.jpcc.5b03507
  • 50. Grancini G, Maiuri M, Fazzi D, Petrozza A, Egelhaaf HJ et al. Hot exciton dissociation in polymer solar cells. Nature Materials 2013; 12: 29-33. doi: 10.1038/NMAT3502
  • 51. Collins SD, Proctor CM, Ran NA, Nguyen TQ. Understanding open-circuit voltage loss through the density of states in organic bulk heterojunction solar cells. Advanced Energy Materials 2016; 6 (4): 1501721. doi: 10.1002/aenm.201501721
  • 52. Zou Y, Holmes RJ. Correlation between the open-circuit voltage and charge transfer state energy in organic photovoltaic cells. ACS Applied Materials and Interfaces 2015, 7 (33): 18306-18311. doi: 10.1021/acsami.5b03656
  • 53. Guan Z, Li HW, Cheng Y, Yang Q, Lo MF et al. Charge-transfer state energy and its relationship with open-circuit voltage in an organic photovoltaic device. The Journal of Physical Chemistry C 2016; 120 (26): 14059-14068. doi: 10.1021/acs.jpcc.6b02375
  • 54. Hoke ET, Vandewal K, Bartelt JA, Mateker WR, Douglas JD et al. Recombination in polymer:fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V. Advanced Energy Materials 2013; 3 (2): 220-230. doi: 10.1002/aenm.201200474
  • 55. Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T et al. The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 2002; 403-404: 368-372. doi: 10.1016/S0040-6090(01)01586-3
  • 56. Blakesley JC, Neher D. Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells. Physical Review B 2011; 84 (7): 075210. doi: 10.1103/PhysRevB.84.075210
  • 57. Pranculis V, Ruseckas A, Vithanage DA, Hedley GJ, Samuel IDW et al. Influence of blend ratio and processing additive on free carrier yield and mobility in PTB7:PC71BM photovoltaic solar cells. The Journal of Physical Chemistry C 2016; 120 (18): 9588-9594. doi: 10.1021/acs. jpcc.6b01658
  • 58. Lin R, Wright M, Puthen-Veettil B, Wen X, Tayebjee MJY et al. Effects of blend composition on the morphology of Si-PCPDTBT:PC71BM bulk heterojunction organic solar cells. Physica Status Solidi A-Applications And Materials Science 2015; 212 (9), 1931-1940. doi: 10.1002/ pssa.201532009
  • 59. Sanyal M, Schmidt-Hansberg B, Klein MFG, Munuera C, Vorobiev A et al. Effect of photovoltaic polymer/fullerene blend composition ratio on microstructure evolution during film solidification investigated in real time by x-ray diffraction. Macromolecules, 2011; 44 (10),3795-800. doi: 10.1021/ma2000338
APA Keser Karaoğlan G, dülger kutlu ö, Altindal A (2021). Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. , 694 - 703. 10.3906/kim-2010-1
Chicago Keser Karaoğlan Gülnur,dülger kutlu öznur,Altindal Ahmet Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. (2021): 694 - 703. 10.3906/kim-2010-1
MLA Keser Karaoğlan Gülnur,dülger kutlu öznur,Altindal Ahmet Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. , 2021, ss.694 - 703. 10.3906/kim-2010-1
AMA Keser Karaoğlan G,dülger kutlu ö,Altindal A Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. . 2021; 694 - 703. 10.3906/kim-2010-1
Vancouver Keser Karaoğlan G,dülger kutlu ö,Altindal A Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. . 2021; 694 - 703. 10.3906/kim-2010-1
IEEE Keser Karaoğlan G,dülger kutlu ö,Altindal A "Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells." , ss.694 - 703, 2021. 10.3906/kim-2010-1
ISNAD Keser Karaoğlan, Gülnur vd. "Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells". (2021), 694-703. https://doi.org/10.3906/kim-2010-1
APA Keser Karaoğlan G, dülger kutlu ö, Altindal A (2021). Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. Turkish Journal of Chemistry, 45(3), 694 - 703. 10.3906/kim-2010-1
Chicago Keser Karaoğlan Gülnur,dülger kutlu öznur,Altindal Ahmet Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. Turkish Journal of Chemistry 45, no.3 (2021): 694 - 703. 10.3906/kim-2010-1
MLA Keser Karaoğlan Gülnur,dülger kutlu öznur,Altindal Ahmet Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. Turkish Journal of Chemistry, vol.45, no.3, 2021, ss.694 - 703. 10.3906/kim-2010-1
AMA Keser Karaoğlan G,dülger kutlu ö,Altindal A Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. Turkish Journal of Chemistry. 2021; 45(3): 694 - 703. 10.3906/kim-2010-1
Vancouver Keser Karaoğlan G,dülger kutlu ö,Altindal A Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells. Turkish Journal of Chemistry. 2021; 45(3): 694 - 703. 10.3906/kim-2010-1
IEEE Keser Karaoğlan G,dülger kutlu ö,Altindal A "Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells." Turkish Journal of Chemistry, 45, ss.694 - 703, 2021. 10.3906/kim-2010-1
ISNAD Keser Karaoğlan, Gülnur vd. "Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells". Turkish Journal of Chemistry 45/3 (2021), 694-703. https://doi.org/10.3906/kim-2010-1