Yıl: 2021 Cilt: 45 Sayı: 3 Sayfa Aralığı: 845 - 857 Metin Dili: İngilizce DOI: 10.3906/kim-2101-13 İndeks Tarihi: 29-06-2022

Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation

Öz:
The selectivity of 4-(Decyloxy) benzoic acid (DBA) liquid crystal in surface adsorption region (303.2–328.2 K) and thermodynamic region (423.2 – 433.2 K) was investigated by inverse gas chromatography at infinite dilution (IGC-ID). The selectivity parameters of the structural isomer series named butyl acetate, butyl alcohol, and amyl alcohol series were calculated for the DBA using IGC-ID technique. Additionally, the surface properties including dispersive surface energy $(gamma_S ^{D}),$ free energy (DGA S ), enthalpy $(DeltaH_A ^{S}),$, and acidity-basicity constants were calculated with net retention volumes obtained from IGC-ID experiment results. When the DHA S and $(DeltaG_A ^{S}),$ are constants, DBA surface was found to be an acidic character $(K_D/K_A cong 0.89).$
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Reinitzer F. Beiträge zur Kenntniss des Cholesterins. Monatshefte für chemie und verwandte teile anderer wissenschaften 1888; 9: 421- 441. doi: 10.1007/BF01516710 (in German).
  • 2. Lehmann O. Uber fliessende krystalle. zeitschrift für physikalische chemie 1889; 4 (1): 462-472. doi: 10.1515/zpch-1889- 0434 (in German).
  • 3. Khodja FA, Sassiat P, Hanafi M, Thiebaut D, Vial J. A promising “metastable” liquid crystal stationary phase for gas chromatography. Journal of Chromatography A 2020; 1616: 460786. doi: 10.1016/j.chroma.2019.460786
  • 4. Witkiewicz Z, Oszczudlowski J, Pepelewicz M. Liquid-crystalline stationary phase for gas chromatography. Journal of Chromatography A 2005; 1062 (2): 155-174. doi: 10.1016/j.chroma.2004.11.042
  • 5. Akkurt N, Al-Jumaili MHA, Ocak H, Cakar F, Torun L. Synthesis and liquid crystalline properties of new triazine-based p-conjugated macromolecules with chiral side groups. Turkish Journal of Chemistry 2020; 44: 726-735. doi: 10.3906/kim-1912-51
  • 6. Akkurt N, Al-Jumaili MHA, Bilgin Eran B, Ocak H, Torun L. Acetylene-bridged triazine p-conjugated structures: synthesis and liquid crystalline properties. Turkish Journal of Chemistry 2019; 43: 1436-1444. doi: 10.3906/kim-1907-26.
  • 7. Çağlar FP, Akdaş-Kılıç H, Ocak H, Bilgin Eran B. Chiral polymorphism in new imine based rod-like liquid crystals. Journal of Molecular Structure 2020; 1220: 128755. doi: 10.1016/j.molstruc.2020.128755
  • 8. Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angewandte Chemie International Edition 2006; 45 (1): 38-68. doi: 10.1002/anie.200501384
  • 9. Cakar F, Ocak H, Ozturk E, Mutlu-Yanic S, Kaya D, San N, Cankurtaran O, Bilgin-Eran B, Karaman F. Investigation of thermodynamic and surface characterization of 4-[4-(2-ethyl hexyloxy) benzoyloxy] benzoic acid thermotropic liquid crystal by inverse gas chromatography. Liquid Crystals 2014; 41 (9): 1323-1331. doi: 10.1080/02678292.2014.919672
  • 10. Ocak H, Özerol EA, Çelikel FÇ, Okutan M, Bilgin Eran B. The synthesis, mesomorphic and dielectric investigation of new unsymmetrical bent-core mesogens derived from 3-hydroxybenzoic acid. Chemical Papers 2020; 74: 3899-3911. doi: 10.1007/s11696-020-01203-4
  • 11. Adiguzel AC, Cakar F, Senkal BF, Cankurtaran O, Hepuzer Gursel Y, Karaman F. Determination of glass transition temperature and surface properties of novel chalcone modified poly (styrene) based polymer. Thermal Science 2019; 23 (1): 193-202. doi: 10.2298/ TSCI180912343A
  • 12. Cankurtaran O, Yilmaz F. A study of the thermodynamical interactions of bisphenol-A polycarbonate with some solvents by gas chromatography. Turkish Journal of Chemistry 1997; 21: 401-408.
  • 13. Adamska K, Sandomierski M, Buchwald Z, Voelkel A. Inverse gas chromatography in the examination of surface properties of experimental dental composites. Polymer Testing 2020; 90: 106697. doi: 10.1016/j.polymertesting.2020.106697
  • 14. Khodakarami M, Alagha L, Burnett DJ. Probing surface characteristics of rare earth minerals using contact angle measurements, atomic force microscopy, and inverse gas chromatography. ACS Omega 2019; 4 (8): 13319-13329. doi: 10.1021/acsomega.9b01491
  • 15. Yazici O, Ocak H, Cakar F, Cankurtaran O, Bilgin-Eran B, Karaman F. Synthesis and thermodynamical interactions of (S)-5-(2- methylbutoxy)-2-[[[4-hexyloxyphenyl] imino] methyl]-phenol liquid crystal with some solvents. Optoelectronics and Advanced Materials-Rapid Communications 2008; 2 (6): 366-370.
  • 16. Tamayo A, Pena-Alonso R, Rubio J, Raj R, Soraru GD, Oteo JL. Surface energy of sol gel-derived silicon oxycarbide glasses. The American Ceramic Society 2011; 94 (12): 4523-4533. doi: 10.1111/j.1551-2916.2011.04810.x
  • 17. Grajek H, Witkiewicz Z, Purchala M, Drzewinski W. Liquid crystals as stationary phases in chromatography. Chromatographia 2016; 79: 1217-1245. doi: 10.1007/s10337-016-3154-5
  • 18. Belusso AC, Strack ML, Guadagnin LS, Faccin DJL, Cardozo NSM, Soares RP, Staudt PB. Infinite dilution activity coefficient of solvents in poly-3-hydroxybutyrate from inverse gas chromatography. Fluid Phase Equilibria 2020; 522: 112742. doi: 10.1016/j.fluid.2020.112742
  • 19. Witkiewicz Z, Szulc J, Dabrowski R. Disc-like liquid crystalline stationary phases from the triphenylene derivatives group. Journal of Chromatography A 1984; 315: 145-159. doi: 10.1016/S0021-9673(01)90732-0
  • 20. Witkiewicz Z. Application of liquid crystals in chromatography. Journal of Chromatography A 1989; 466: 37-87. doi: 10.1016/S0021- 9673(01)84616-1
  • 21. Ghanem E, Al-Hariri S. Separation of isomers on nematic liquid crystal stationary phases in gas chromatography: a review. Chromatographia 2014; 77: 653-662. doi: 10.1007/S10337-014-2675-z
  • 22. Cook LE, Spangelo RC. Separation of monosubstituted phenol isomers using liquid crystals. Analytical Chemistry 1974; 46 (1): 122-125. doi: 10.1021/ac60337a020
  • 23. Richmond AB. Use of liquid crystals for the separation of position isomers of disubstituted benzenes. Journal of Chromatographic Science 1971; 9 (9): 571-574. doi: 10.1093/chromsci/9.9.571
  • 24. Ban T, Li XP, Li CL, Wang Q. Surface characterization of a series of 1-alkyl-3-methylimidazolium based ionic liquids by inverse gas chromatography. Industrial & Engineering Chemistry Research 2018; 57 (36): 12249-12253. doi: 10.1021/acs.iecr.8b02110
  • 25. Menzel R, Bismarck A, Shaffer MSP. Deconvolution of the structural and chemical surface properties of carbon nanotubes by inverse gas chromatography. Carbon 2012; 50 (10): 3416-3421. doi: 10.1016/j.carbon.2012.02.094
  • 26. Cordeiro N, Gouveia C, John MJ. Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography. Industrial Crops and Products 2011; 33 (1): 108-115. doi: 10.1016/j.indcrop.2010.09.008
  • 27. Krol P, Krol B. Determination of free surface energy values for ceramic materials and polyurethane surface-modifying aqueous emulsions. Journal of The European Ceramic Society 2006; 26 (12): 2241-2248. doi: 10.1016/j.jeurceramsoc.2005.04.011
  • 28. Aşkın A, Topaloğlu Yazıcı D. Surface characterization of sepiolite by inverse gas chromatography. Chromatographia 2005; 61: 625-631. doi: 10.1365/s10337-005-0558-z
  • 29. Sivaev IB, Bregadze VI. Lewis acidity of boron compounds. Coordination Chemistry Reviews 2014; 270-271: 75-88. doi: 10.1016/j. ccr.2013.10.017
  • 30. Perez-Mendoza M, Almazan-Almazan MC, Mendez-Linan L, Domingo-Garcia M, Lopez-Garzon FJ. Evaluation of the dispersive component of the surface energy of active carbons as determined by inverse gas chromatography at zero surface coverage. Journal of Chromatography A 2008; 1214 (1-2): 121-127. doi: 10.1016/j.chroma.2008.10.070
  • 31. Planinsek O, Trojak A, Srcic S. The dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurement. International Journal of Pharmaceutics 2001; 221 (1-2): 211-217. doi: 10.1016/S0378-5173(01)00687-1
  • 32. Kunaver M, Zadnik J, Planinsek O, Srcic S. Inverse gas chromatography – a different approach to characterization of solids and liquids. Acta Chimica Slovenica 2004; 51: 373-394.
  • 33. Voelkel A, Strzemiecka B, Marek AA, Zawadiak J. Inverse gas chromatography investigation of oxidized polyolefins: surface properties. Journal of Chromatography A 2014; 1337: 194-201. doi: 10.1016/j.chroma.2014.02.042
  • 34. Ugraskan V, Isik B, Yazici O, Cakar F. Thermodynamic characterization of sodium alginate by inverse gas chromatography. Journal of Chemical & Engineering Data 2020; 65: 1795-1801. doi: 10.1021/acs.jced.9b01074
  • 35. Cakar F. Synthesis and thermodynamic characterization of poly(methyl methacrylate)/multiwall carbon nanotube nanocomposite. Surface and Interface Analysis 2020; 1: 1-10. doi: 10.1002/sia.6911
  • 36. Pal A, Kondor A, Mitra S, Thu K, Harish S, Saha BB. On surface energy and acid-base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography. Journal of Industrial and Engineering Chemistry 2019; 69: 432-443. doi: 10.1016/j.jiec.2018.09.046
  • 37. Ocak H, Mutlu-Yanic S, Cakar F, Bilgin-Eran B, Guzeller D, Karaman F, Cankurtaran O. A study of the thermodynamical interactions with solvents and surface characterization of liquid crystalline 5-((S)-3,7-dimethyloctyloxy)-2-[[[4-(dodecyloxy) phenyl] imino]-methyl] phenol by inverse gas chromatography. Journal of Molecular Liquids 2016; 223: 861-867. doi: 10.1016/j.molliq.2016.09.002
  • 38. Katja DW, Werner E. Theory of gas chromatography. In: Dettmer-Wilde K, Engewald W (editors). Practical Gas Chromatography. Berlin: Springer-Verlag, 2014, pp. 21-31.
  • 39. Carmona-Quiroga PM, Rubio J, Sanchez MJ, Martinez-Ramirez S, Blanco-Varela MT. Surface dispersive energy determined with IGC-ID in anti-graffiti-coated building materials. Progress in Organic Coatings 2011; 71: 207-212. doi: 10.1016/j.porgcoat.2011.02.014
  • 40. Autie-Castro G, Reguera E, Cavalcante Jr. CL, Araujo AS, Rodriguez-Castellon E. Surface acid-base properties of Cu-BTC and Fe-BTC MOFs. An inverse gas chromatography and n-butylamine thermo desorption study. Inorganica Chimica Acta 2020; 507: 119590. doi: 10.1016/j.ica.2020.119590
  • 41. Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A. Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose 1995; 2: 145-157. doi: 10.1007/BF00813015
  • 42. Adamska K, Sandomierski M, Buchwald Z, Voelkel A. Inverse gas chromatography in the examination of surface properties of experimental dental composites. Polymer Testing 2020; 90: 106697. doi: 10.1016/j.polymertesting.2020.106697
  • 43. Shah UV, Olusanmi D, Narang AS, Hussain MA, Tobyn MJ, Heng JYY. Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders. International Journal of Pharmaceutics 2014; 475: 592-596. doi: 10.1016/j. ijpharm.2014.09.018
  • 44. Shah UV, Olusanmi D, Narang AS, Hussain MA, Gamble JF, Tobyn MJ, Heng JYY. Effect of crystal habits on the surface energy and cohesion of crystalline powders. International Journal of Pharmaceutics 2014; 472 (1-2): 140-147. doi: 10.1016/j.ijpharm.2014.06.014
  • 45. Bensalem S, Hamdi B, Confetto SD, Calvet R. Characterization of surface properties of chitosan/bentonite composites beads by inverse gas chromatography. International Journal of Biological Macromolecules 2021; 166: 1448-1459. doi: 10.1016/j.ijbiomac.2020.11.024
  • 46. Dorris GM, Gray DG. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. Journal of Colloid and Interface Science 1980; 77 (2): 353-362. doi: 10.1016/0021-9797(80)90304-5
  • 47. Kakani V, Kim H, Basivi PK, Rasupuleti VR. Surface thermo-dynamic characterization of poly (vinylidene chloride-co-acrylonitrile) (P(VDC-co-AN)) using inverse-gas chromatography and investigation of visual traits using computer vision image processing algorithms. Polymers 2020; 12: 1631-1655. doi: 10.3390/polym12081631
  • 48. Schultz J, Lavielle L, Martin C. The role of the interface in carbon fibre-epoxy composites. The Journal of Adhesion 1987; 23 (1): 45-60. doi: 10.1080/00218468708080469
  • 49. Shi B, Wang Y, Jia L. Comparison of Dorris-Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography. Journal of Chromatography A 2011; 1218 (6): 860-862. doi: 10.1016/j.chroma.2010.12.050
  • 50. Erol I, Cakar F, Ocak H, Cankurtaran H, Cankurtaran O, Bilgin-Eran B, Karaman F. Thermodynamic and surface characterization of 4-[4-((S)-citronellyloxy) benzoyloxy] benzoic acid thermotropic liquid crystal. Liquid Crystals 2016; 43 (1): 142-151. doi: 10.1080/02678292.2015.1067334
  • 51. Gamelas JAF. The surface properties of cellulose and lignocellulosic materials assessed by inverse gas chromatography: a review. Cellulose 2013; 20: 2675-2693. doi: 10.1007/s10570-013-0066-5
  • 52. Hamieh T, Abbasian A, Farshchi N. New methods to characterize the surface and interface acid-base properties of some hydrocarbons by inverse gas chromatography. Chromatographia 2020; 83: 615-629. doi: 10.1007/s10337-020-03878-z
  • 53. Gutmann V. The Donor-Acceptor Approach to Molecular Interactions. New York, NY, USA: Plenum, 1978.
  • 54. Yla-Maihaniemi PP, Heng JYY, Thielmann F, Williams DR. Inverse gas chromatographic method for measuring the dispersive surface energy distribution for particles. Langmuir 2008; 24(17): 9551-9557. doi: 10.1021/la801676n
  • 55. Heydar KT, Pourrahim S, Ghonouei N, Yaghoubnejad S, Shatifi A. Thermodynamic parameters of a new synthesized tricationic ionic liquid stationary phase by inverse gas chromatography. Journal of Chemical & Engineering Data 2018; 63 (12): 4513-4523. doi: 10.1021/ acs.jced.8b00601
  • 56. Santos JMRCA, Guthrie JT. Study of a core-shell type impact modifier by inverse gas chromatography. Journal of Chromatography A 2005; 1070 (1-2): 147-154. doi: 10.1016/j.chroma.2005.02.060
  • 57. Santos JMRCA, Guthrie JT. Analysis of interactions in multicomponent polymeric systems: the key-role of inverse gas chromatography. Materials Science and Engineering: R: Reports 2005; 50 (3): 79-107. doi: 10.1016/j.mser.2005.07.003
  • 58. Gholami F, Tomas M, Gholami Z, Mirzaei S, Vakili M. Surface characterization of carbonaceous materials using inverse gas chromatography: a review. Electrochem 2020; 1: 367-387. doi: 10.3390/electrochem104002
  • 59. Xu Y, Lin J, Xia J, Hu B. Surface characterization of urushiol-titanium chelate polymers by inverse gas chromatography. Chinese Journal of Chromatography 2011; 29 (3): 249-253. doi: 10.3724/sp.j.1123.2011.00249
  • 60. Wang Q, Wang Q. Evaluation of the surface properties of poly (ionic liquid) materials by inverse gas chromatography. European Polymer Journal 2020; 123: 109451. doi: 10.1016/j.eurpolymj.2019.109451
APA IŞIK B, Cakar f, Cankurtaran H, Cankurtaran Ö (2021). Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. , 845 - 857. 10.3906/kim-2101-13
Chicago IŞIK BİROL,Cakar fatih,Cankurtaran Hüsnü,Cankurtaran Özlem Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. (2021): 845 - 857. 10.3906/kim-2101-13
MLA IŞIK BİROL,Cakar fatih,Cankurtaran Hüsnü,Cankurtaran Özlem Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. , 2021, ss.845 - 857. 10.3906/kim-2101-13
AMA IŞIK B,Cakar f,Cankurtaran H,Cankurtaran Ö Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. . 2021; 845 - 857. 10.3906/kim-2101-13
Vancouver IŞIK B,Cakar f,Cankurtaran H,Cankurtaran Ö Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. . 2021; 845 - 857. 10.3906/kim-2101-13
IEEE IŞIK B,Cakar f,Cankurtaran H,Cankurtaran Ö "Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation." , ss.845 - 857, 2021. 10.3906/kim-2101-13
ISNAD IŞIK, BİROL vd. "Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation". (2021), 845-857. https://doi.org/10.3906/kim-2101-13
APA IŞIK B, Cakar f, Cankurtaran H, Cankurtaran Ö (2021). Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. Turkish Journal of Chemistry, 45(3), 845 - 857. 10.3906/kim-2101-13
Chicago IŞIK BİROL,Cakar fatih,Cankurtaran Hüsnü,Cankurtaran Özlem Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. Turkish Journal of Chemistry 45, no.3 (2021): 845 - 857. 10.3906/kim-2101-13
MLA IŞIK BİROL,Cakar fatih,Cankurtaran Hüsnü,Cankurtaran Özlem Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. Turkish Journal of Chemistry, vol.45, no.3, 2021, ss.845 - 857. 10.3906/kim-2101-13
AMA IŞIK B,Cakar f,Cankurtaran H,Cankurtaran Ö Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. Turkish Journal of Chemistry. 2021; 45(3): 845 - 857. 10.3906/kim-2101-13
Vancouver IŞIK B,Cakar f,Cankurtaran H,Cankurtaran Ö Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. Turkish Journal of Chemistry. 2021; 45(3): 845 - 857. 10.3906/kim-2101-13
IEEE IŞIK B,Cakar f,Cankurtaran H,Cankurtaran Ö "Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation." Turkish Journal of Chemistry, 45, ss.845 - 857, 2021. 10.3906/kim-2101-13
ISNAD IŞIK, BİROL vd. "Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation". Turkish Journal of Chemistry 45/3 (2021), 845-857. https://doi.org/10.3906/kim-2101-13