Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles

Yıl: 2021 Cilt: 45 Sayı: 3 Sayfa Aralığı: 879 - 891 Metin Dili: İngilizce DOI: 10.3906/kim-2101-2 İndeks Tarihi: 29-06-2022

Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles

Öz:
A new technique for sensing Ga(III) concentration based on polyvinyl alcohol-citrate capped gold nanoparticle–p-aminohippuric acid hybrid (or three-layer core-shell configurations) has been demonstrated. The p-aminohippuric acid capped citrate-gold nanoparticles were comfortably agglomerated in the presence of Ga(III), and the color of the reaction quickly turned from red to violet or blue. Under the detection conditions, a good linear relationship was ideally obtained between the ratio of the absorbance intensity at 620 nm to that at 520 nm $(A_{620{/A_{520})$. The linear response range, the detection, and quantification limit was 34.9–418.3 μg/L and 7.6 μg/L, and 25 μg/L, respectively. To reflect the accuracy, the developed sensing approach was evaluated against certified reference materials (TMDA 51.3 fortified water and TMDA 28.3 fortified water). This colorimetric strategy was displayed excellent selectivity for Ga(III) over other examined ions. Additionally, the colorimetric method was properly used to detect the concentrations of Ga in tap water and certified reference material samples with recoveries ranging from 95.4 to 102.0%, displaying that the colorimetric procedure could be safely used for a realistic application.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Syu CH, Chen PW, Huang CC, Lee DY. Accumulation of gallium (Ga) and indium (In) in rice grains in Ga- and In-contaminated paddy soils. Environmental Pollution 2020; 261: 114189. doi:10.1016/j.envpol.2020.114189
  • 2. Yu HS, Liao WT. Gallium: environmental pollution and health effects. In: Encyclopedia of Environmental Health. Elsevier 2019; 153-157. doi:10.1016/B978-0-444-63951-6.00474-5
  • 3. Tanaka A. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicology and Applied Pharmacology 2004; 198 (3): 405-411. doi:10.1016/j.taap.2003.10.019
  • 4. Ivanoff CS, Ivanoff AE, Hottel TL. Gallium poisoning: a rare case report. Food and Chemical Toxicology 2012; 50 (2): 212-215. doi:10.1016/j. fct.2011.10.041
  • 5. Yu J, Kang Y, Lu Q, Luo H, Cui L et al. Determination of gallium and indium by solution cathode glow discharge as an excitation source for atomic emission spectrometry. Spectrochimica Acta - Part B Atomic Spectroscopy 2020; 172: 105968. doi:10.1016/j.sab.2020.105968
  • 6. Zu W, Yang Y, Wang Y, Yang X, Liu C et al. Rapid determination of indium in water samples using a portable solution cathode glow discharge-atomic emission spectrometer. Microchemical Journal 2018; 137: 266-271. doi:10.1016/j.microc.2017.11.001
  • 7. Li H, Zu W, Liu F, Wang Y, Yang Y et al. Determination of gallium in water samples by atomic emission spectrometry based on solution cathode glow discharge. Spectrochimica Acta - Part B Atomic Spectroscopy 2019; 152: 25-29. doi:10.1016/j.sab.2018.12.004
  • 8. Filella M, Rodushkin I. A concise guide for the determination of less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) by inductively coupled plasma mass spectrometry in environmental samples. Spectrochimica Acta - Part B Atomic Spectroscopy 2018; 141 :80-84. doi:10.1016/j.sab.2018.01.004
  • 9. De Santana FA, Barbosa JTP, Matos GD, Korn MGA, Ferreira SLC. Direct determination of gallium in bauxite employing ICP OES using the reference element technique for interference elimination. Microchemical Journal 2013; 110: 198-201. doi:10.1016/j.microc.2013.03.011
  • 10. Krawczyk-Coda M. Sequential determination of gallium, indium, and thallium in environmental samples after preconcentration on halloysite nanotubes using ultrasound-assisted dispersive micro solid-phase extraction. New Journal of Chemistry 2018; 42 (18): 15444- 15452. doi:10.1039/c8nj03555e
  • 11. Wu CC, Liu HM. Determination of gallium in human urine by supercritical carbon dioxide extraction and graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials 2009; 163 (1-2): 1239-1245. doi:10.1016/j.jhazmat.2008.07.093
  • 12. Grabarczyk M, Wasąg Kontakt J. Determination of trace amounts of Ga(III) by adsorptive stripping voltammetry with in situ plated bismuth film electrode. Talanta 2015; 144: 1091-1095. doi:10.1016/j.talanta.2015.07.083
  • 13. Grabarczyk M, Wasąg J. Adsorptive cathodic stripping voltammetric method for determination of gallium using an in situ plated lead film electrode. Electroanalysis 2015; 27 (11): 2596-2600. doi:10.1002/elan.201500235
  • 14. Rolinger L, Rüdt M, Hubbuch J. A critical review of recent trends, and a future perspective of optical spectroscopy as PAT in biopharmaceutical downstream processing. Analytical and Bioanalytical Chemistry 2020; 412 (9): 2047-2064. doi:10.1007/s00216-020- 02407-z
  • 15. Chang C-C, Chen C-P, Wu T-H, Yang C-H, Lin C-W et al. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials 2019; 9 (6): 861. doi:10.3390/nano9060861
  • 16. Sabela M, Balme S, Bechelany M, Janot J-M, Bisetty K. A review of gold and silver nanoparticle-based colorimetric sensing assays. Advanced Engineering Materials 2017; 19 (12): 1700270. doi:10.1002/adem.201700270
  • 17. Pezzato C, Maiti S, Chen JLY, Cazzolaro A, Gobbo C et al. Monolayer protected gold nanoparticles with metal-ion binding sites: Functional systems for chemosensing applications. Chemical Communications 2015; 51 (49): 9922-9931. doi:10.1039/c5cc00814j
  • 18. Dhumale VA, Gangwar RK, Pande N. Importance of gold nanoparticles for detection of toxic heavy metal ions and vital role in biomedical applications. Materials Research Innovations 2020; 1-9. doi:10.1080/14328917.2020.1825770
  • 19. Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B et al. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2018; 10 (1): 18-33. doi:10.1039/c7nr06367a
  • 20. Wang R, Bowling I, Liu W. Cost effective surface functionalization of gold nanoparticles with a mixed DNA and PEG monolayer for nanotechnology applications. RSC Advances 2017;7 (7): 3676-3679. doi:10.1039/C6RA26791B
  • 21. Priyadarshini E, Pradhan N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sensors and Actuators, B: Chemical 2017; 238: 888-902. doi:10.1016/j.snb.2016.06.081
  • 22. Zong J, Cobb SL, Cameron NR. Peptide-functionalized gold nanoparticles: Versatile biomaterials for diagnostic and therapeutic applications. Biomaterials Science 2017; 5 (5): 872-886. doi:10.1039/c7bm00006e
  • 23. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chemical Reviews 2019; 119 (8): 4819-4880. doi:10.1021/acs.chemrev.8b00733
  • 24. Liu S, Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: a review. Electrophoresis 2019; 40 (18-19): 2438-2461. doi:10.1002/elps.201900111
  • 25. Mohammed IA, Al-Gawhari FJ. Gold nanoparticle: Synthesis, functionalization, enhancement, drug delivery and therapy: a review. Systematic Review Pharmacy 2020; 11 (6): 888-910. doi:10.31838/srp.2020.6.127
  • 26. Amourizi F, Dashtian K, Ghaedi M. Polyvinylalcohol-citrate-stabilized gold nanoparticles supported congo red indicator as an optical sensor for selective colorimetric determination of Cr(III) ion. Polyhedron 2020; 176: 114278. doi:10.1016/j.poly.2019.114278
  • 27. Hu MH, Huang WH, Suo LL, Zhou LH, Ma LF et al. Gold nanoparticles functionalized with 2,6-dimercaptopurine for sensitive and selective colorimetric determination of cadmium(II) in food, biological and environmental samples. Analaytical Methods 2017; 9 (38): 5598-5603. doi:10.1039/c7ay01871a
  • 28. Jin W, Huang P, Chen Y, Wu F, Wan Y. Colorimetric detection of Cr3+ using gold nanoparticles functionalized with 4-amino hippuric acid. Journal of Nanoparticle Research 2015; 17: 358. doi:10.1007/s11051-015-3156-5
  • 29. Avan AA, Filik H, Demirata B. Solid-phase extraction of Cr(VI) with magnetic melamine-formaldehyde resins, followed by its colorimetric sensing using gold nanoparticles modified with p-amino hippuric acid. Microchemical Jornal 2021; 164: 105962. doi:10.1016/j. microc.2021.105962
  • 30. Roto R, Mellisani B, Kuncaka A, Mudasir M, Suratman A. Colorimetric sensing of Pb2+ ion by using ag nanoparticles in the presence of dithizone. Chemosensors 2019; 7 (3): 28. doi:10.3390/CHEMOSENSORS7030028
  • 31. Tian K, Siegel G, Tiwari A. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid. Materials Science and Engineering: C 2017; 71: 195-199. doi:10.1016/j.msec.2016.10.006
  • 32. Liu L, Leng Y, Lin H. Photometric and visual detection of Cr(VI) using gold nanoparticles modified with 1,5-diphenylcarbazide. Microchimica Acta 2016; 183 (4): 1367-1373. doi:10.1007/s00604-016-1777-8
  • 33. Turkevich J. Colloidal gold. Part I - Historical and preparative aspects, morphology and structure. Gold Bulletin 1985; 18 (3): 86-91. doi:10.1007/BF03214690
  • 34. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie - International Edition 2004; 43 (45): 6042-6108. doi:10.1002/anie.200400651
  • 35. Ojea-Jiménez I, Puntes V. Instability of cationic gold nanoparticle bioconjugates: The role of citrate ions. Journal of the American Chemical Society 2009; 131 (37): 13320-13327. doi:10.1021/ja902894s
  • 36. Spampinato V, Parracino MA, La Spina R, Rossi F, Ceccone G. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications. Frontiers in Chemistry 2016; 4: 8. doi:10.3389/fchem.2016.00008
  • 37. Sun Z, Cui Z, Li H. p-Amino benzenesulfonic acid functionalized gold nanoparticles: synthesis, colorimetric detection of carbaryl and mechanism study by zeta potential assays. Sensors and Actuators, B: Chemical 2013; 183 (183): 297-302. doi:10.1016/j.snb.2013.04.032
  • 38. Gaikwad PV., Sharma SK, Sudarshan K, Kumar V, Kshirsagar A et al. Molecular packing of polyvinyl alcohol in PVA-gold nanoparticles composites and its role on thermo-mechanical properties. Polymer Composites 2018; 39 (4): 1137-1143. doi:10.1002/pc.24042
  • 39. O’Brien P, Salacinski H, Motevalli M. The X-ray single crystal structure of a gallium citrate complex $(NH_4 )_3[Ga(C_6H_5O_7)_2]·4H_2O$. Journal of the American Chemical Society 1997; 119 (51): 12695-12696. doi:10.1021/ja973009i
  • 40. Saxena OC. Direct titrimetric microdetermination of thallium(I), indium, and gallium(III) separately. I. microdetermination of indiumthallium(I) and indium-gallium(III) in one solution without separation. Microchemical Journal 1971; 16 (3): 367-375. doi:10.1016/0026- 265X(71)90018-X
  • 41. Agnihotri NK, Ratnanii S, Singh VK, Singh HB. Simultaneous determination of gallium and indium with 2-(5-Bromo-2-pyridylazo)- 5-diethylaminophenol in cationic micellar medium using derivative spectrophotometry. Analytical Sciences 2003; 19 (9): 1297-1301. doi:10.2116/analsci.19.1297
  • 42. Amin AS, Moalla SMN. Utility of solid phase extraction for UV-visible spectrophotometric determination of gallium in environmental and biological samples. RSC Advances 2016; 6 (3): 1938-1944. doi:10.1039/c5ra21368a
  • 43. Połedniok J, Orzeł J, Gałeczka J, Czoik R. A highly sensitive spectrophotometric method for gallium determination with chrome azurol S in the presence of mixed cationic-nonionic surfactants and its application in plant analysis. Communications in Soil Science and Plant Analysis 2017; 48 (8): 936-942. doi:10.1080/00103624.2017.1311907
  • 44. Ahmed MJ, Hoque MR, Shahed ASM, Khan H, Bhattacharjee SC. A simple spectrophotometric method for the determination of aluminum insome environmental, biological, soil and pharmaceutical samples using 2-hydroxynaphthaldehydebenzoylhydrazone. Eurasian Journal of Analytical Chemistry 2010; 5 (1): 1-15
  • 45. Arain GM, Devi I, Khuhawar MY. Spectrophotometric determination of gallium(III) as bipyridylglyoxal bis(4-phenyl-3-thiosemicarbazone) derivative. Asian Journal of Chemistry 2007; 19 (7): 5169-5176
  • 46. Reddy KPPRM, Reddy VK, Reddy PR. Selective second order derivative spectrophotometric method for the determination of gallium(III) in presence of large excess of indium(III). Analytical Letters 2007; 40 (12): 2374-2383. doi:10.1080/00032710701577799
  • 47. Filik H, Doğutan M, Tütem E, Apak R. Spectrophotometric determination of gallium(III) with rutin. Analytical Sciences 2002; 18 (8): 955-957. doi:10.2116/analsci.18.955
APA AVAN A (2021). Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. , 879 - 891. 10.3906/kim-2101-2
Chicago AVAN ASİYE ASLIHAN Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. (2021): 879 - 891. 10.3906/kim-2101-2
MLA AVAN ASİYE ASLIHAN Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. , 2021, ss.879 - 891. 10.3906/kim-2101-2
AMA AVAN A Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. . 2021; 879 - 891. 10.3906/kim-2101-2
Vancouver AVAN A Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. . 2021; 879 - 891. 10.3906/kim-2101-2
IEEE AVAN A "Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles." , ss.879 - 891, 2021. 10.3906/kim-2101-2
ISNAD AVAN, ASİYE ASLIHAN. "Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles". (2021), 879-891. https://doi.org/10.3906/kim-2101-2
APA AVAN A (2021). Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. Turkish Journal of Chemistry, 45(3), 879 - 891. 10.3906/kim-2101-2
Chicago AVAN ASİYE ASLIHAN Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. Turkish Journal of Chemistry 45, no.3 (2021): 879 - 891. 10.3906/kim-2101-2
MLA AVAN ASİYE ASLIHAN Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. Turkish Journal of Chemistry, vol.45, no.3, 2021, ss.879 - 891. 10.3906/kim-2101-2
AMA AVAN A Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. Turkish Journal of Chemistry. 2021; 45(3): 879 - 891. 10.3906/kim-2101-2
Vancouver AVAN A Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles. Turkish Journal of Chemistry. 2021; 45(3): 879 - 891. 10.3906/kim-2101-2
IEEE AVAN A "Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles." Turkish Journal of Chemistry, 45, ss.879 - 891, 2021. 10.3906/kim-2101-2
ISNAD AVAN, ASİYE ASLIHAN. "Spectrophotometric and colorimetric determination of gallium (III) with p-aminohippuric acid-functionalized citrate capped gold nanoparticles". Turkish Journal of Chemistry 45/3 (2021), 879-891. https://doi.org/10.3906/kim-2101-2