Yıl: 2021 Cilt: 45 Sayı: 3 Sayfa Aralığı: 905 - 913 Metin Dili: İngilizce DOI: 10.3906/kim-2012-6 İndeks Tarihi: 29-06-2022

Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications

Öz:
Development of unique strategies to overcome Shockley–Queisser (SQ) limit in solar cells has gained a great deal of interest. Multiple exciton generation (MEG) process has been considered as one of the best approaches to the SQ limitation. In this respect, PbSe quantum dots (QDs) and nanorods (NRs) have been regarded as promising solar energy harvesting materials owing to their noticeable MEG yields. Although air stability has been regarded as one of the main disadvantage of PbSe QDs, no study has pointed out to the air sensitivity of PbSe NRs yet. Here, we reveal the effect of aspect ratio on air sensitivity and optical properties of PbSe NRs and discover that NRs with higher aspect ratios are more air stable, attributed to the reduced density of NR ends with air sensitive {100} facets. Furthermore, a band offset was created by utilization of tetrabutylammonium iodide and 1,2-ethanedithiol ligands in cell designs. We found that solar cells based on pristine PbSe NRs are limited by low open circuit voltages due to leakage current pathways. On the other hand, modified cells comprising light absorbing layers prepared by blending NRs and QDs and hole transporting QD layer exhibit a 10-fold improvement in solar cell efficiency.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Beard MC, Luther JM, Semonin OE, Nozik AJ. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Accounts of Chemical Research 2013; 46 (6): 1252-1260. doi: 10.1021/ar3001958
  • 2. Lu H, Huang Z, Martinez MS, Johnson JC, Luther JM et al. Transforming energy using quantum dots. Energy & Environmental Science 2020; 13 (5): 1347-1376. doi: 10.1039/C9EE03930A
  • 3. Semonin OE, Luther JM, Choi S, Chen HY, Gao J et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science (New York, NY) 2011; 334 (6062): 1530-1533. doi: 10.1126/science.1209845
  • 4. Böhm ML, Jellicoe TC, Tabachnyk M, Davis NJLK, Wisnivesky-Rocca-Rivarola F et al. Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Letters 2015; 15 (12): 7987-7993. doi: 10.1021/acs.nanolett.5b03161
  • 5. Davis NJLK, Böhm ML, Tabachnyk M, Wisnivesky-Rocca-Rivarola F, Jellicoe TC et al. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nature Communications 2015; 6: 8259. doi: 10.1038/ncomms9259
  • 6. Beard MC, Midgett AG, Hanna MC, Luther JM, Hughes BK et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Letters 2010; 10 (8): 3019-3027. doi: 10.1021/nl101490z
  • 7. McClain J, Schrier J. Multiple exciton generation in graphene nanostructures. The Journal of Physical Chemistry C 2010; 114 (34): 14332- 14338. doi: 10.1021/jp101259m
  • 8. Beard MC. Multiple exciton generation in semiconductor quantum dots. The Journal of Physical Chemistry Letters 2011; 2 (11): 1282- 1288. doi: 10.1021/jz200166y
  • 9. Sun J, Yu W, Usman A, Isimjan TT, DGobbo S et al. Generation of multiple excitons in ag 2 s quantum dots: single high-energy versus multiple-photon excitation. The Journal of Physical Chemistry Letters 2014; 5 (4): 659-665. doi: 10.1021/jz5000512
  • 10. Fischer SA, Madrid AB, Isborn CM, Prezhdo O V. Multiple exciton generation in small si clusters: a high-level, ab initio study. The Journal of Physical Chemistry Letters 2010; 1 (1): 232-237. doi: 10.1021/jz900097e
  • 11. Hanna MC, Beard MC, Nozik AJ. Effect of solar concentration on the thermodynamic power conversion efficiency of quantum-dot solar cells exhibiting multiple exciton generation. The Journal of Physical Chemistry Letters 2012; 3 (19): 2857-2862. doi: 10.1021/jz301077e
  • 12. Padilha LA, Stewart JT, Sandberg RL, Bae WK, Koh WK et al. Carrier multiplication in semiconductor nanocrystals: influence of size, shape, and composition. Accounts of Chemical Research 2013; 46 (6): 1261-1269. doi: 10.1021/ar300228x
  • 13. Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D et al. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology 2012; 7 (9): 577-582. doi: 10.1038/nnano.2012.127
  • 14. Lin Q, Yun HJ, Liu W, Song HJ, Makarov NS et al. Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films. Journal of the American Chemical Society 2017; 139 (19): 6644-6653. doi: 10.1021/jacs.7b01327
  • 15. Asil D, Walker BJ, Ehrler B, Vaynzof Y, Sepe A et al. Role of PbSe structural stabilization in photovoltaic cells. Advanced Functional Materials 2015; 25 (6): 928-935. doi: 10.1002/adfm.201401816
  • 16. Hacıefendioğlu T, Solmaz TK, Erkan M, Asil D. A comprehensive approach for the instability of PbTe quantum dots and design of a combinatorial passivation strategy. Solar Energy Materials and Solar Cells 2020; 207: 110362. doi: 10.1016/j.solmat.2019.110362
  • 17. Tang J, Brzozowski L, Barkhouse DAR, Wang X, Debnath R et al. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano 2010; 4 (2): 869-878. doi: 10.1021/nn901564q
  • 18. Hughes BK, Ruddy DA, Blackburn JL, Smith DK, Bergren MR et al. Control of PbSe quantum dot surface chemistry and photophysics using an alkylselenide ligand. ACS Nano 2012; 6 (6): 5498-5506. doi: 10.1021/nn301405j
  • 19. Haciefendioglu T, Alptekin DA. PbSe Nanorods for hybrid solar cells: Optimization of synthesis protocols and investigation of surface stability. In: International Conference on Photovoltaic Science and Technologies (PVCon); Ankara, Turkey; 2018. doi: 10.1109/ PVCon.2018.8523936
  • 20. Yang L, Tabachnyk M, Bayliss SL, Böhm ML, Broch K et al. Solution-processable singlet fission photovoltaic devices. Nano Letters 2015; 15 (1): 354-358. doi: 10.1021/nl503650a
  • 21. Han L, Liu J, Yu N, Liu Z, Gu J et al. Facile synthesis of ultra-small PbSe nanorods for photovoltaic application. Nanoscale 2015; 7 (6): 2461-2470. doi: 10.1039/C4NR05707D
  • 22. Argeri M, Fraccarollo A, Grassi F, Marchese L, Cossi M. Density functional theory modeling of pbse nanoclusters: effect of surface passivation on shape and composition. The Journal of Physical Chemistry C 2011; 115 (23): 11382-11389. doi: 10.1021/jp201112x
  • 23. Choi J, Ko JHJH, Kim YHYH, Jeong S, Choi H et al. Steric-hindrance-driven shape transition in PbS quantum dots: understanding sizedependent stability. Journal of the American Chemical Society 2013; 135 (14): 5278-5281. doi: 10.1021/ja400948t
  • 24. Mićić OI, Ahrenkiel SP, Nozik AJ. Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films. Applied Physics Letters 2001; 78 (25): 4022-4024. doi: 10.1063/1.1379990
  • 25. Koh W, Bartnik AC, Wise FW, Murray CB. Synthesis of monodisperse pbse nanorods: a case for oriented attachment. Journal of the American Chemical Society 2010; 132 (11): 3909-3913. doi: 10.1021/ja9105682
  • 26. Milliron DJ, Gur I, Alivisatos AP. Hybrid organic–nanocrystal solar cells. MRS Bulletin 2005; 30 (1): 41-44. doi: 10.1557/mrs2005.8
  • 27. Bartnik AC, Efros AL, Koh WK, Murray CB, Wise FW. Electronic states and optical properties of PbSe nanorods and nanowires. Physical Review B 2010; 82 (19): 195313. doi: 10.1103/PhysRevB.82.195313
  • 28. Li L shi, Hu J, Yang W, Alivisatos AP. Band gap variation of size- and shape-controlled colloidal cdse quantum rods. Nano Letters 2001; 1 (7): 349-351. doi: 10.1021/nl015559r
  • 29. Placencia D, Boercker JE, Foos EE, Tischler JG. Synthesis and optical properties of pbse nanorods with controlled diameter and length. The Journal of Physical Chemistry Letters 2015; 6 (17): 3360-3364. doi: 10.1021/acs.jpclett.5b01511
  • 30. Zhao F, Mukherjee S, Ma J, Li D, Elizondo SL et al. Influence of oxygen passivation on optical properties of PbSe thin films. Applied Physics Letters 2008; 92 (21): 211110. doi: 10.1063/1.2938417
  • 31. Choi JJ, Bealing CR, Bian K, Hughes KJ, Zhang W et al. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. Journal of the American Chemical Society 2011; 133 (9): 3131-3138. doi: 10.1021/ja110454b
  • 32. Chuang CHM, Brown PR, Bulović V, Bawendi MG. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials 2014; 13 (8): 796-801. doi: 10.1038/nmat3984
  • 33. Lan X, Voznyy O, García de Arquer FP, Liu M, Xu J et al. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Letters 2016; 16 (7): 4630-4634. doi: 10.1021/acs.nanolett.6b01957
  • 34. Xu J, Voznyy O, Liu M, Kirmani AR, Walters G et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology 2018; 13 (6): 456-462. doi: 10.1038/s41565-018-0117-z
  • 35. Choi MJ, García de Arquer FP, Proppe AH, Seifitokaldani A, Choi J et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications 2020; 11 (1): 103. doi: 10.1038/s41467-019-13437-2
  • 36. Sun B, Vafaie M, Levina L, Wei M, Dong Y et al. Ligand-assisted reconstruction of colloidal quantum dots decreases trap state density. Nano Letters 2020; 20 (5): 3694-3702. doi: 10.1021/acs.nanolett.0c00638
APA Asil D, Hacıefendioğlu T (2021). Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. , 905 - 913. 10.3906/kim-2012-6
Chicago Asil Demet,Hacıefendioğlu Tuğba Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. (2021): 905 - 913. 10.3906/kim-2012-6
MLA Asil Demet,Hacıefendioğlu Tuğba Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. , 2021, ss.905 - 913. 10.3906/kim-2012-6
AMA Asil D,Hacıefendioğlu T Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. . 2021; 905 - 913. 10.3906/kim-2012-6
Vancouver Asil D,Hacıefendioğlu T Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. . 2021; 905 - 913. 10.3906/kim-2012-6
IEEE Asil D,Hacıefendioğlu T "Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications." , ss.905 - 913, 2021. 10.3906/kim-2012-6
ISNAD Asil, Demet - Hacıefendioğlu, Tuğba. "Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications". (2021), 905-913. https://doi.org/10.3906/kim-2012-6
APA Asil D, Hacıefendioğlu T (2021). Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. Turkish Journal of Chemistry, 45(3), 905 - 913. 10.3906/kim-2012-6
Chicago Asil Demet,Hacıefendioğlu Tuğba Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. Turkish Journal of Chemistry 45, no.3 (2021): 905 - 913. 10.3906/kim-2012-6
MLA Asil Demet,Hacıefendioğlu Tuğba Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. Turkish Journal of Chemistry, vol.45, no.3, 2021, ss.905 - 913. 10.3906/kim-2012-6
AMA Asil D,Hacıefendioğlu T Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. Turkish Journal of Chemistry. 2021; 45(3): 905 - 913. 10.3906/kim-2012-6
Vancouver Asil D,Hacıefendioğlu T Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications. Turkish Journal of Chemistry. 2021; 45(3): 905 - 913. 10.3906/kim-2012-6
IEEE Asil D,Hacıefendioğlu T "Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications." Turkish Journal of Chemistry, 45, ss.905 - 913, 2021. 10.3906/kim-2012-6
ISNAD Asil, Demet - Hacıefendioğlu, Tuğba. "Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications". Turkish Journal of Chemistry 45/3 (2021), 905-913. https://doi.org/10.3906/kim-2012-6