Yıl: 2021 Cilt: 45 Sayı: 4 Sayfa Aralığı: 986 - 1003 Metin Dili: İngilizce DOI: 10.3906/kim-2012-14 İndeks Tarihi: 29-06-2022

Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway

Öz:
There is growing interest in the detection of bacteria in consumables, for example, in the food and water sectors. In this study, the aim was to produce a polymer-based bacteria biosensor via ROMP (ring opening metathesis polymerization). In the first part of the study, block and random copolymers were synthesized, and their biocidal activities were tested on the glass surface. Interdigitated electrode arrays coated with the polymers possessing the highest activity were used to screen the affinity towards different bacterial strains by monitoring impedance variations in real-time. The polymer-coated electrode could detect gram-positive and gram-negative bacteria strains at a concentration of 107 cfu/mL. The results show that ROMP-based polymer offers bacterial detection and can be used in developing biosensor devices for efficiently detecting pathogenic bacteria.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. De Miranda JL, Oliveira MD, Oliveira IS, Frias IA, Franco OL et al. A simple nanostructured biosensor based on clavanin A antimicrobial peptide for gram-negative bacteria detection. Biochemical Engineering Journal 2017; 124: 108-114. doi: 10.1016/j.bej.2017.04.013
  • 2. Sadat Ebrahimi MM, Voss Y, Schönherr H. Rapid detection of Escherichia coli via enzymatically triggered reactions in self-reporting chitosan hydrogels. ACS Applied Materials & Interfaces 2015; 7 (36): 20190-20199. doi: 10.1021/acsami.5b05746
  • 3. Kwon D, Joo J, Lee J, Park KH, Jeon S. Magnetophoretic chromatography for the detection of pathogenic bacteria with the naked eye. Analytical Chemistry 2013; 85 (15): 7594-7598.doi: 10.1021/ac401717f
  • 4. Liu X., Marrakchi M, Xu D, Dong H, Andreescu S. Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosensors and Bioelectronics 2016; 80: 9-16. doi: 10.1016/j.bios.2016.01.041
  • 5. Lillehoj PB, Kaplan CW, He J, Shi W, Ho CM. Rapid, electrical impedance detection of bacterial pathogens using immobilized antimicrobial peptides. Journal of Laboratory Automation 2014; 19 (1): 42-49. doi: 10.1177/2211068213495207
  • 6. Roy M, Bhatt M, Maurya V, Arya S, Gaind R et al. Changing trend in bacterial etiology and antibiotic resistance in sepsis of intramural neonates at a tertiary care hospital. Journal of Postgraduate Medicine 2017; 63 (3): 162. doi: 10.4103/0022-3859.201425
  • 7. Kulinkina AV, Shinee E, Guzmán Herrador BR, Nygard K, Schmoll O. The Situation of Water-related Infectious Diseases in the PanEuropean Region. Geneva, Switzerland: World Health Organization, 2016.
  • 8. Ray PC, Khan SA, Singh AK, Senapati D, Fan Z. Nanomaterials for targeted detection and photothermal killing of bacteria. Chemical Society Reviews 2012; 41 (8): 3193-3209. doi: 10.1039/c2cs15340h
  • 9. Ji J Schanzle JA, Tabacco MB. Real-time detection of bacterial contamination in dynamic aqueous environments using optical sensors. Analytical Chemistry 2004; 76 (5): 1411-1418. doi: 10.1021/ac034914q
  • 10. Clausen CH, Dimaki M, Bertelsen CV, Skands GE, Rodriguez-Trujillo R et al. Bacteria detection and differentiation using impedance flow cytometry. Sensors 2018; 18 (10): 3496-4007. doi: 10.3390/s18103496
  • 11. Etayash H, Jiang K, Thundat T, Kaur K. Impedimetric detection of pathogenic gram-positive bacteria using an antimicrobial peptide from class IIa bacteriocins. Analytical Chemistry 2014; 86 (3): 1693-1700. doi: 10.1021/ac4034938
  • 12. Daly P, Collier T, Doyle S. PCR-ELISA detection of Escherichia coli in milk. Letters in Applied Microbiology 2002; 34 (3): 222-226. doi:10.1046/j.1472-765x.2002.01074.x
  • 13. Osek J, Gallien P. Molecular analysis of Escherichia coli O157 strains isolated from cattle and pigs by the use of PCR and pulsed-field gel electrophoresis methods. Veterinarni Medicina-Praha- 2002; 47 (6): 149-158. doi: 10.17221/5819-VETMED
  • 14. Ivanov D. BioMEMS sensor systems for bacterial infection detection. BioDrugs 2006; 20 (6): 351-356. doi: 10.2165/00063030-200620060- 00005
  • 15. Radke SM, Alocilja EC. A high density microelectrode array biosensor for detection of E. coli O157: H7. Biosensors and Bioelectronics 2005; 20 (8): 1662-1667. doi: 10.1016/j.bios.2004.07.021
  • 16. Andrade CA, Nascimento JM, Oliveira IS, De Oliveira CV, De Melo CP et al Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial detection. Colloids and Surfaces B: Biointerfaces 2015; 135: 833-839. doi: 10.1016/j.colsurfb.2015.03.037
  • 17. Li Y, Afrasiabi R, Fathi F, Wang N, Xiang C et al. Impedance based detection of pathogenic E. coli O157: H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosensors and Bioelectronics 2014; 58: 193-199.
  • 18. Jiang H, Jiang D, Shao J, Sun X. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosensors and Bioelectronics 2016; 75: 411-419. doi: 10.1016/j.bios.2014.02.045
  • 19. Mannoor MS, Zhang S, Link AJ, McAlpine MC. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proceedings of the National Academy of Sciences 2010; 107 (45): 19207-19212. doi: 10.1073/pnas.1008768107
  • 20. Miranda OR, Li X, Garcia-Gonzalez L, Zhu ZJ, Yan B et al. Colorimetric bacteria sensing using a supramolecular enzyme–nanoparticle biosensor. Journal of the American Chemical Society 2011; 133 (25): 9650-9653. doi: 10.1021/ja2021729
  • 21. Khan NI, Song E. Lab-on-a-Chip systems for aptamer-based biosensing. Micromachines 2020; 11 (2): 220-249. doi: 10.3390/mi11020220
  • 22. Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM. Integrating recognition elements with nanomaterials for bacteria sensing. Chemical Society Reviews 2017; 46 (5): 1272-1283. doi: 10.1039/C6CS00313C
  • 23. Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD et al. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. Journal of Nanobiotechnology 2017; 15 (1): 25. doi: 10.1186/s12951-017-0260-y
  • 24. Cytryńska M, Zdybicka-Barabas A. Defense peptides: recent developments. Biomolecular Concepts 2015; 6 (4): 237-251. doi: 10.1515/ bmc-2015-0014
  • 25. Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N et al. Mammalian defensins: structures and mechanism of antibiotic activity. Journal of Leukocyte Biology 2005; 77 (4): 466-475. doi: 10.1189/jlb.0804452
  • 26. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews 2003; 55 (1): 27-55. doi: 10.1124/pr.55.1.2
  • 27. Jiang K, Etayash H, Azmi S, Naicker S, Hassanpourfard M et al. Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy. Analytical Methods 2015; 7 (23): 9744-9748. doi: 10.1039/C5AY01917F
  • 28. Li Q, Wu Y, Lu H, Wu X, Chen S et al. Construction of supramolecular nanoassembly for responsive bacterial elimination and effective bacterial detection. ACS Applied Materials & Interfaces 2017; 9 (11): 10180-10189. doi: 10.1021/acsami.7b00873
  • 29. Lvov Y, Ariga K, Ichinose I, Kunitake T. Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin A and glycogen. Thin Solid Films 1996; 284: 797-801. doi: 10.1016/S0040-6090(95)08449-5
  • 30. Altay E, Yapaöz MA, Keskin B, Yucesan G, Eren T. Influence of alkyl chain length on the surface activity of antibacterial polymers derived from ROMP. Colloids and Surfaces B: Biointerfaces 2015; 127: 73-78. doi: 10.1016/j.colsurfb.2015.01.020
  • 31. Demir C, Süer NC, Yapaöz MA, Kebir N, Okullu SÖ et al. Biocidal activity of ROMP-polymer coatings containing quaternary phosphonium groups. Progress in Organic Coatings 2019; 135: 299-305. doi: 10.1016/j.porgcoat.2019.06.008
  • 32. Huang T, Qian Y, Wei J, Zhou C. Polymeric antimicrobial food packaging and its applications. Polymers 2019; 11 (3): 560. doi: 10.3390/ polym11030560
  • 33. Arora A, Mishra A. Antibacterial polymers–a mini review. Materials Today: Proceedings 2018; 5 (9): 17156-17161. doi: 10.1016/j. matpr.2018.04.124
  • 36. Thaker HD, Sgolastra F, Clements D, Scott RW, Tew GN. Synthetic mimics of antimicrobial peptides from triaryl scaffolds. Journal of Medicinal Chemistry 2011; 54 (7): 2241-2254. doi: 10.1021/jm101410t
  • 35. Kuroda K, Caputo GA. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2013; 5 (1): 49-66. doi: 10.1002/wnan.1199
  • 36. Love JA, Morgan JP, Trnka TM, Grubbs RH. A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. Angewandte Chemie International Edition 2002; 41 (21): 4035-4037. doi: 10.1002/1521-3773(20021104)41:21<4035::AIDANIE4035>3.0.CO;2-I
  • 39. France MB, Alty LT, Earl TM. Synthesis of a 7-oxanorbornene monomer: a two-st7p sequence preparation for the organic laboratory. Journal of Chemical Education 1999; 76 (5): 659. doi: 10.1021/ed076p659
  • 38. Bazzi HS, Sleiman HF. Adenine-containing block copolymers via ring-opening metathesis polymerization: synthesis and self-assembly into rod morphologies. Macromolecules 2002; 35 (26): 9617-9620. doi: 10.1021/ma025676o
  • 39. Süer NC, Demir C, Ünübol NA, Yalçın Ö, Kocagöz T et al. Antimicrobial activities of phosphonium containing polynorbornenes. RSC Advances 2016; 6 (89): 86151-86157. doi: 10.1039/C6RA15545F
  • 40. Eren T, Tew GN. Phosphonic acid-based amphiphilic diblock copolymers derived from ROMP. Journal of Polymer Science Part A: Polymer Chemistry 2009; 47 (15): 3949-3956. doi: 10.1002/pola.23425
  • 41. Sambhy V, Peterson BR, Sen A. Multifunctional silane polymers for persistent surface derivatization and their antimicrobial properties. Langmuir : the ACS Journal Of Surfaces and Colloids 2008; 24 (14): 7549-7558. doi: 10.1021/la800858z
  • 42. Li P, Poon YF, Li W, Zhu HY, Yeap SH et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nature Materials 2011; 10 (2): 149-156. doi: 10.1038/nmat2915
  • 43. Eren T, Som A, Rennie JR, Nelson CF, Urgina Y et al. Antibacterial and hemolytic activities of quaternary pyridinium functionalized polynorbornenes. Macromolecular Chemistry and Physics 2008; 209 (5): 516-524. doi: 10.1002/macp.200700418
  • 44. Mojtahedi MM, Samadian S. Efficient and rapid solvent-free acetylation of alcohols, phenols, and thiols using catalytic amounts of sodium acetate trihydrate. Journal of Chemistry 2013. doi: 10.1155/2013/642479
  • 45. Ju-Nam Y, Abdussalam-Mohammed W, Ojeda JJ. Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO. Faraday Discussions 2016; 186: 77-93. doi: 10.1039/C5FD00131E
  • 46. Kang Y, Won DJ, Kim SR, Seo K, Choi HS et al. Self-assembled monolayer of the aromatic thioacetate on the gold surface. Materials Science and Engineering: C 2004; 24 (1-2): 43-46. doi: 10.1016/j.msec.2003.09.042
  • 47. Judzewitsch PR, Zhao L, Wong EH, Boyer C. High-throughput synthesis of antimicrobial copolymers and rapid evaluation of their bioactivity. Macromolecules 2019; 52 (11): 3975-3986. doi: 10.1021/acs.macromol.9b00290
  • 48. Riga EK, Vöhringer M, Widyaya VT, Lienkamp K. Polymer-based surfaces designed to reduce biofilm formation: from antimicrobial polymers to strategies for long-term applications. Macromolecular Rapid Communications 2017; 38 (20): 1700216. doi: 10.1002/ marc.201700216
  • 49. Bratov A, Abramova N. Chemical sensors and biosensors based on impedimetric interdigitated electrode array transducers. Smart Sensor and Sensing Technology. NY: Nova Science Publishers: 2013; 155-164.
  • 50. Brosel Oliu S, Uria N, Abramova N, Bratov A. Impedimetric sensors for bacteria detection. Biosensors-Micro and Nanoscale Applications. London: IntechOpen 2015; 257-288. doi: 10.5772/60741
  • 51. Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances 2008; 26 (2): 135-150. doi: 10.1016/j.biotechadv.2007.10.003
  • 52. Li Y, Karlin A, Loike JD, Silverstein SC. A critical concentration of neutrophils is required for effective bacterial killing in suspension. Proceedings of the National Academy of Sciences 2002; 99 (12): 8289-8294. doi: 10.1073/pnas.122244799
  • 53. Sanchis A, Brown A, Sancho M, Martinez G, Sebastian J et al. Dielectric characterization of bacterial cells using dielectrophoresis. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 2007; 28 (5): 393-401. doi: 10.1002/bem.20317
  • 54. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proceedings of the National Academy of Sciences 2007; 104 (7): 2384-2389. doi: 0.1073/pnas.0608775104
  • 55. Kjos M, Nes IF, Diep DB. Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology 2009; 155 (9): 2949-2961. doi: 10.1099/mic.0.030015-0
  • 56. Kissinger PT, Heineman WR. Cyclic voltammetry. Journal of Chemical Education 1983; 60 (9): 702. doi: 10.1021/ed060p702
  • 57. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT et al. A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education 2018; 95 (2): 197-206. doi: 10.1021/acs.jchemed.7b00361
APA SÜER N, OZBEK T, Cankurtaran H, Okutan M, Gallei M, EREN T (2021). Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. , 986 - 1003. 10.3906/kim-2012-14
Chicago SÜER N. Ceren,OZBEK Tulin,Cankurtaran Hüsnü,Okutan Mustafa,Gallei Markus,EREN TARIK Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. (2021): 986 - 1003. 10.3906/kim-2012-14
MLA SÜER N. Ceren,OZBEK Tulin,Cankurtaran Hüsnü,Okutan Mustafa,Gallei Markus,EREN TARIK Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. , 2021, ss.986 - 1003. 10.3906/kim-2012-14
AMA SÜER N,OZBEK T,Cankurtaran H,Okutan M,Gallei M,EREN T Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. . 2021; 986 - 1003. 10.3906/kim-2012-14
Vancouver SÜER N,OZBEK T,Cankurtaran H,Okutan M,Gallei M,EREN T Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. . 2021; 986 - 1003. 10.3906/kim-2012-14
IEEE SÜER N,OZBEK T,Cankurtaran H,Okutan M,Gallei M,EREN T "Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway." , ss.986 - 1003, 2021. 10.3906/kim-2012-14
ISNAD SÜER, N. Ceren vd. "Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway". (2021), 986-1003. https://doi.org/10.3906/kim-2012-14
APA SÜER N, OZBEK T, Cankurtaran H, Okutan M, Gallei M, EREN T (2021). Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. Turkish Journal of Chemistry, 45(4), 986 - 1003. 10.3906/kim-2012-14
Chicago SÜER N. Ceren,OZBEK Tulin,Cankurtaran Hüsnü,Okutan Mustafa,Gallei Markus,EREN TARIK Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. Turkish Journal of Chemistry 45, no.4 (2021): 986 - 1003. 10.3906/kim-2012-14
MLA SÜER N. Ceren,OZBEK Tulin,Cankurtaran Hüsnü,Okutan Mustafa,Gallei Markus,EREN TARIK Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. Turkish Journal of Chemistry, vol.45, no.4, 2021, ss.986 - 1003. 10.3906/kim-2012-14
AMA SÜER N,OZBEK T,Cankurtaran H,Okutan M,Gallei M,EREN T Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. Turkish Journal of Chemistry. 2021; 45(4): 986 - 1003. 10.3906/kim-2012-14
Vancouver SÜER N,OZBEK T,Cankurtaran H,Okutan M,Gallei M,EREN T Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway. Turkish Journal of Chemistry. 2021; 45(4): 986 - 1003. 10.3906/kim-2012-14
IEEE SÜER N,OZBEK T,Cankurtaran H,Okutan M,Gallei M,EREN T "Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway." Turkish Journal of Chemistry, 45, ss.986 - 1003, 2021. 10.3906/kim-2012-14
ISNAD SÜER, N. Ceren vd. "Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway". Turkish Journal of Chemistry 45/4 (2021), 986-1003. https://doi.org/10.3906/kim-2012-14