Yıl: 2022 Cilt: 46 Sayı: 1 Sayfa Aralığı: 67 - 73 Metin Dili: İngilizce DOI: 10.3906/vet-2102-56 İndeks Tarihi: 04-10-2022

Determination of plant-specific retrotransposons in chicken

Öz:
Mobile genetic elements are also known as transposons, comprising a significant proportion of plant and animal genomes. Retrotransposons, a class of transposons, move copy and paste mechanism and, therefore, cause genome obesity. Moreover, the transferability of retrotransposons within and between different kingdoms has provided valuable information for evolutionary relationships in addition to detailed knowledge about genomes. We identified barley-specific retrotransposons (Nikita and Sukkula) and determined polymorphism ratios of these retrotransposons in a chicken genome for the first time to gain new insights for retrotransposons found in different genomes. Transposon sequences belonging to chicken and barley genomes were also investigated to understand the evolutionary relationships. For this purpose, the samples from Turkish native chicken Gerze were analyzed using a retrotransposon-based molecular marker, IRAP (inter-retrotransposon amplified polymorphism). As a result of the analyses, there was no polymorphism among the samples in Sukkula analysis, while Nikita showed 0%–60% polymorphism. Moreover, in silico analyses also presented that these two retrotransposons are closely related to other chicken retrotransposons. Obtaining results could offer a practical approach for chicken genome analyses, especially for the identification of genes to obtain desired traits.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Mandal PK, Kazazian HH. SnapShot: vertebrate transposons. Cell 2008; 135 (1): 192-192. doi: 10.1016/j.cell.2008.09.028
  • 2. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nature Reviews Genetics 2009; 10 (10): 691-703. doi: 10.1038/nrg2640
  • 3. Zhang HH, Peccoud J, Zhang XG, Gilbert C. Horizontal transfer and evolution of transposable elements in vertebrates. Nature Communications 2020; 11 (1): 1-10. doi: 10.1038/ s41467-020-15149-4
  • 4. Ghonaim M, Kalendar R, Barakat H, Elsherif N, Ashry N et al. High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis. Molecular Biology Reports 2020; 47 (3): 1589-1603. doi: 10.1007/s11033-020- 05246-4
  • 5. Ramos KS, Moore S, Runge I, Tavera-Garcia MA, Cascone I et al. The nucleolin antagonist N6L inhibits LINE1 retrotransposon activity in non-small cell lung carcinoma cells. Journal of Cancer 2020; 11 (3): 733-740. doi: 10.7150/jca.37776
  • 6. Pettersson ME, Jern P. Whole-genome analysis of domestic chicken selection lines suggests segregating variation in ERV makeups. Genes 2019; 10 (2): 162. doi: 10.3390/genes10020162
  • 7. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microbial Genomics 2017; 3 (10): e000132. doi: 10.1099/mgen.0.000132
  • 8. Chen F, Dong W, Zhang J, Guo X, Chen J et al. The sequenced angiosperm genomes and genome databases. Frontiers in Plant Science 2018; 9: 418. doi: 10.3389/fpls.2018.00418
  • 9. Arumugam R, Uli JE, Annavi G. A review of the application of next generation sequencing (NGS) in wild terrestrial vertebrate research. Annual Research & Review in Biology 2019; 31 (5): 1-9. doi: 10.9734/arrb/2019/v31i530061
  • 10. International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004; 432 (7018): 695-716. doi: 10.1038/nature03154
  • 11. International Chicken Genome Sequencing Consortium. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms. Nature 2004; 432 (7018): 717-722. doi: 10.1038/nature03156
  • 12. Hughes AL, Piontkivska H. DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size. BMC Ecology and Evolution 2005; 5 (1): 12. doi: 10.1186/1471-2148-5-12
  • 13. Cogburn LA, Porter TE, Duclos M, Simon J, Burgess SC et al. Functional genomics of the chicken—a model organism. Poultry Science 2007; 86 (10): 2059-2094. doi: 10.1093/ ps/86.10.2059
  • 14. Lyimo CM, Weigend A, Msoffe PL, Eding H, Simianer H et al. Global diversity and genetic contributions of chicken populations from African, Asian and European regions. Animal Genetics 2014; 45: 836-848. doi: 10.1111/age.12230
  • 15. Weigend S, Romanov M. Current strategies for the assessment and evaluation of genetic diversity in chicken resources. Worlds Poultry Science Journal 2001; 57: 282-828. doi: 10.1079/ WPS20010020.
  • 16. Sacco MA, Flannery DMJ, Howes K, Venugopal K. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. Journal of Virology 2000; 74 (3): 1296-1306. doi: 10.1128/jvi.74.3.1296-1306.2000
  • 17. Cakmak B, Marakli S, Gozukirmizi N. SIRE1 retrotransposons in barley (Hordeum vulgare L.). Russian Journal of Genetics 2015; 51 (7): 661-672. doi: 10.1134/S1022795415070029
  • 18. Marakli S, Calis A, Gozukirmizi N. Determination of barleyspecific retrotransposons’ movements in Pinus nigra ssp. pallasiana varieties: pyramidata and Seneriana. Russian Journal of Genetics 2019; 55 (1): 71-78. doi: 10.1134/S1022795419010101
  • 19. Miller SA, Dykes DD, Polesky A. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 1988; 16 (3): 1215. doi: 10.1093/nar/16.3.1215
  • 20. Kalendar R, Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols 2006; 1 (5): 2478-2484. doi: 10.1038/nprot.2006.377
  • 21. Leigh F, Kalendar R, Lea V, Lee D, Donini P et al. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Molecular Genetics and Genomics 2003; 269 (4): 464-474. doi: 10.1007/s00438- 003-0850-2
  • 22. Jaccard P. Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 1908; 44: 223-270. doi: 10.5169/seals-268384
  • 23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 2018; 35 (6): 1547- 1549. doi: 10.1093/molbev/msy096
  • 24. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 1987; 4 (4): 406-425. doi: 10.1093/oxfordjournals. molbev.a040454
  • 25. Nei M, Kumar S. Molecular evolution and phylogenetics. Oxford University Press. New York; 2000.
  • 26. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39 (4): 783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x
  • 27. Gozukirmizi N, Yilmaz S, Marakli S, Temel A. Retrotransposonbased molecular markers; tools for variation analysis in plants. In: Taški-Ajduković, K. (Ed.), Applications of Molecular Markers in Plant Genome Analysis and Breeding. Research Signpost Kerala; 2015:19-45.
  • 28. Thomas EO, Zuniga G, Sun W, Frost B. Awakening the dark side: retrotransposon activation in neurodegenerative disorders. Current Opinion in Neurobiology 2020; 61: 65-72. doi: 10.1016/j.conb.2020.01.012
  • 29. Alzohairy A, Yousef M, Edris S, Kerti B, Gyulai G et al. Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in barley (Hordeum vulgare) via RT-qPCR. Life Science Journal 2012; 9 (4): 5019-5026.
  • 30. Tufan AF, Ibisoglu MS, Yilmaz S, Gozukirmizi N. Investigation of rice (Oryza sativa L.) retrotransposons in different taxa. Genetic Resources and Crop Evolution 2020: 1-7. doi: 10.1007/ s10722-020-00919-2
  • 31. Yigider E, Taspinar MS, Aydin M, Agar G. Cobalt-induced retrotransposon polymorphism and humic acid protection on maize genome. Biologia Futura 2020: 1-8. doi: 10.1007/s42977- 020-00001-z
  • 32. Marakli S. Retrotransposon analyses in Cucurbitaceae family. International Journal of Science Letters 2019; 1 (1): 68- 76. doi: 10.38058/ijsl.592537
  • 33. Marakli S, Yilmaz S, Gozukirmizi N. BARE1 and BAGY2 retrotransposon movements and expression analyses in developing barley seedlings. Biotechnology & Biotechnological Equipment 2012; 26 (6): 3451-3456. doi: 10.5504/ BBEQ.2012.0112
  • 34. Cakmak B, Marakli S, Gozukirmizi N. Sukkula retrotransposon movements in the human genome. Biotechnology & Biotechnological Equipment 2017; 31 (4): 756-760. doi: 10.1080/13102818.2017.1316684
  • 35. Saraswathi MS, Uma S, Ramaraj S, Durai P, Mustaffa MM et al. Inter retrotransposon based genetic diversity and phylogenetic analysis among the Musa germplasm accessions. Journal of Plant Biochemistry and Biotechnology 2020; 29 (1): 114-124. doi: 10.1007/s13562-019-00519-x
  • 36. Lin X, Faridi N, Casola C. An ancient transkingdom horizontal transfer of penelope-like retroelements from arthropods to conifers. Genome Biology and Evolution 2016; 8 (4): 1252- 1266. doi: 10.1093/gbe/evw076
  • 37. Gao D, Chu Y, Xia H, Xu C, Heyduk K et al. Horizontal transfer of non-LTR retrotransposons from arthropods to flowering plants. Molecular Biology and Evolution 2018; 35 (2): 354-364. doi: 10.1093/molbev/msx275
  • 38. Meyerowitz EM. Plants compared to animals: the broadest comparative study of development. Science. 2002; 295 (5559): 1482-1485. doi: 10.1126/science.1066609
  • 39. Rubin CJ, Zody MC, Eriksson J, Meadows JRS, Sherwood E et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010; 464 (7288): 587- 591. doi: 10.1038/nature08832
APA MERCAN L, BÜLBÜL C, BILGI F, Marakli S (2022). Determination of plant-specific retrotransposons in chicken. , 67 - 73. 10.3906/vet-2102-56
Chicago MERCAN Levent,BÜLBÜL Cihat Erdem,BILGI FATIH,Marakli Sevgi Determination of plant-specific retrotransposons in chicken. (2022): 67 - 73. 10.3906/vet-2102-56
MLA MERCAN Levent,BÜLBÜL Cihat Erdem,BILGI FATIH,Marakli Sevgi Determination of plant-specific retrotransposons in chicken. , 2022, ss.67 - 73. 10.3906/vet-2102-56
AMA MERCAN L,BÜLBÜL C,BILGI F,Marakli S Determination of plant-specific retrotransposons in chicken. . 2022; 67 - 73. 10.3906/vet-2102-56
Vancouver MERCAN L,BÜLBÜL C,BILGI F,Marakli S Determination of plant-specific retrotransposons in chicken. . 2022; 67 - 73. 10.3906/vet-2102-56
IEEE MERCAN L,BÜLBÜL C,BILGI F,Marakli S "Determination of plant-specific retrotransposons in chicken." , ss.67 - 73, 2022. 10.3906/vet-2102-56
ISNAD MERCAN, Levent vd. "Determination of plant-specific retrotransposons in chicken". (2022), 67-73. https://doi.org/10.3906/vet-2102-56
APA MERCAN L, BÜLBÜL C, BILGI F, Marakli S (2022). Determination of plant-specific retrotransposons in chicken. Turkish Journal of Veterinary and Animal Sciences, 46(1), 67 - 73. 10.3906/vet-2102-56
Chicago MERCAN Levent,BÜLBÜL Cihat Erdem,BILGI FATIH,Marakli Sevgi Determination of plant-specific retrotransposons in chicken. Turkish Journal of Veterinary and Animal Sciences 46, no.1 (2022): 67 - 73. 10.3906/vet-2102-56
MLA MERCAN Levent,BÜLBÜL Cihat Erdem,BILGI FATIH,Marakli Sevgi Determination of plant-specific retrotransposons in chicken. Turkish Journal of Veterinary and Animal Sciences, vol.46, no.1, 2022, ss.67 - 73. 10.3906/vet-2102-56
AMA MERCAN L,BÜLBÜL C,BILGI F,Marakli S Determination of plant-specific retrotransposons in chicken. Turkish Journal of Veterinary and Animal Sciences. 2022; 46(1): 67 - 73. 10.3906/vet-2102-56
Vancouver MERCAN L,BÜLBÜL C,BILGI F,Marakli S Determination of plant-specific retrotransposons in chicken. Turkish Journal of Veterinary and Animal Sciences. 2022; 46(1): 67 - 73. 10.3906/vet-2102-56
IEEE MERCAN L,BÜLBÜL C,BILGI F,Marakli S "Determination of plant-specific retrotransposons in chicken." Turkish Journal of Veterinary and Animal Sciences, 46, ss.67 - 73, 2022. 10.3906/vet-2102-56
ISNAD MERCAN, Levent vd. "Determination of plant-specific retrotransposons in chicken". Turkish Journal of Veterinary and Animal Sciences 46/1 (2022), 67-73. https://doi.org/10.3906/vet-2102-56