Yıl: 2021 Cilt: 45 Sayı: 4 Sayfa Aralığı: 1173 - 1188 Metin Dili: İngilizce DOI: 10.3906/kim-2102-16 İndeks Tarihi: 29-06-2022

Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology

Öz:
In this study, the carbon nanotube supported gold, bismuth, and gold-bismuth (Au/MWCNT, Bi/MWCNT, and Au-Bi/ MWCNT) nanocatalysts were prepared with NaBH4 reduction method at varying molar atomic ratio for glucose electrooxidation (GAEO). The synthesized nanocatalysts at different Au: Bi atomic ratios are characterized via x-ray diffraction (XRD), transmission electron microscopy (TEM), and $N_2$ adsorption-desorption. For the performance of AuBi/MWCNT for GAEO, electrochemical measurements are performed by using different electrochemical techniques namely cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Monometallic Au/MWCNT exhibits higher activity than Bi/MWCNT with 256.57 mA/mg (0.936 mA/cm2 ) current density. According to CV results, Au80Bi20/MWCNT nanocatalyst has the highest GAEO activity with the mass activity of 320.15 mA/mg (1.133 mA/cm2 ). For $Au_{80}Bi_{20}/MWCNT$, central composite design (CCD) is utilized for optimum conditions of the electrode preparation. $Au_{80}Bi_{20}/MWCNT$ nanocatalysts are promising anode nanocatalysts for direct glucose fuel cells (DGFCs).
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ulas B, Caglar A, Sahin O, Kivrak H. Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. Journal of Colloid and Interface Science 2018; 532: 47-57. doi: 10.1016/j.jcis.2018.07.120
  • 2. Kucukvar M, Onat NC, Haider MA. Material dependence of national energy development plans: The case for Turkey and United Kingdom. Journal of Cleaner Production 2018; 200: 490-500. doi: 10.1016/j.jclepro.2018.07.245
  • 3. Ozgür T, Yakaryılmaz AC. A review: exergy analysis of PEM and PEM fuel cell based CHP systems. International Journal of Hydrogen Energy 2018; 43 (38): 17993-8000. doi: 10.1016/j.ijhydene.2018.01.106
  • 4. Kakaei K, Khodadoost S, Gholipour M, Shouraei N. Core-shell polyaniline functionalized carbon quantum dots for supercapacitor. Journal of Physics and Chemistry of Solids 2021; 148: 109753. doi: 10.1016/j.jpcs.2020.109753
  • 5. Kakaei K, Ghadimi G. A green method for Nitrogen-doped graphene and its application for oxygen reduction reaction in alkaline media. Materials Technology 2021; 36 (1): 46-53. doi: 10.1080/10667857.2020.1724692
  • 6. Kakaei K, Ostadi Z. Nickel nanoparticles coated on the exfoliated graphene layer as an efficient and stable catalyst for oxygen reduction and hydrogen evolution in alkaline media. Materials Research Express 2020; 7 (5): 055504. doi: 10.1088/2053-1591/ab8c70
  • 7. Yayla S, Ayça S, Oruç M. A case study on piezoelectric energy harvesting with using vortex generator plate modeling for fluids. Renewable Energy 2020; 157: 1243-1253. doi: 10.1016/j.renene.2020.05.027
  • 8. Kivrak H, Atbas D, Alal O, Çögenli MS, Bayrakceken A et al. A complementary study on novel PdAuCo catalysts: Synthesis, characterization, direct formic acid fuel cell application, and exergy analysis. International Journal of Hydrogen Energy 2018; 43 (48): 21886-21898. doi: 10.1016/j.ijhydene.2018.09.135
  • 9. Caglar A, Sahan T, Cogenli MS, Yurtcan AB, Aktas N et al. A novel central composite design based response surface methodology optimization study for the synthesis of Pd/CNT direct formic acid fuel cell anode catalyst. International Journal of Hydrogen Energy 2018; 43 (24): 11002-11011. doi: 10.1016/j.ijhydene.2018.04.208
  • 10. Er OM, Caglar A, Ulas B, Kivrak H, Kivrak A. Novel carbon nanotube supported Co@Ag@Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method. Materials Chemistry and Physics 2019; 241: 122422. doi: 10.1016/j. matchemphys.2019.122422
  • 11. Tao B, Miao F, Chu PK. Preparation and characterization of a novel nickel–palladium electrode supported by silicon nanowires for direct glucose fuel cell. Electrochimica Acta 2012; 65: 149-152. doi: 10.1016/j.electacta.2012.01.017
  • 12. Silva LS, Almeida CV, Meneses CT, Batista EA, Santos SF et al. AuPd/C core–shell and alloy nanoparticles with enhanced catalytic activity toward the electro-oxidation of ethanol in alkaline media. Applied Catalysis B: Environmental 2019; 251: 313-325. doi: 10.1016/j. apcatb.2019.03.067
  • 13. Kakaei K, Rahnavardi M. Synthesis of nitrogen-doped reduced graphene oxide and its decoration with high efficiency palladium nanoparticles for direct ethanol fuel cell. Renewable Energy 2021; 163: 1277-1286. doi: 10.1016/j.renene.2020.09.043
  • 14. Zhang Y, Gao F, Song P, Wang J, Song T et al. The chain-typed nanoflowers structure endows PtBi with highly electrocatalytic activity of ethylene glycol oxidation. Journal of Alloys and Compounds 2019; 789: 834-840. doi: 10.1016/j.jallcom.2019.03.067
  • 15. Zabielaitė A, Balčiūnaitė A, Šimkūnaitė D, Lichušina S, Stalnionienė I et al. High performance direct $N_2 H4-H_2O_2$ fuel cell using fibershaped co decorated with Pt crystallites as anode electrocatalysts. Journal of the Electrochemical Society 2020; 167 (5): 054502. doi: 10.1149/2.0052005jes
  • 16. Chuesutham T, Sirivat A, Paradee N, Changkhamchom S, Wattanakul K et al. Improvement of sulfonated poly (ether ether ketone)/Yzeolite-$SO_3H$ via organo-functionalization method for direct methanol fuel cell. Renewable Energy 2019; 138: 243-249. doi: 10.1016/j. renene.2019.01.107
  • 17. Kakaei K, Javan H, Mohammadi HB. Synthesis of carbon quantum dots nanoparticles by cyclic voltammetry and its application as methanol tolerant oxygen reduction reaction electrocatalyst. Journal of the Chinese Chemical Society 2016; 63 (5): 432-437. doi: 10.1002/ jccs.201500534
  • 18. Chen J, Zhao CX, Zhi MM, Wang K, Deng L et al. Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochimica Acta 2012; 66: 133-138. doi: 10.1016/j.electacta.2012.01.071
  • 19. Caglar A, Ulas B, Sahin O, Kivrak H. Synthesis of in situ N-, S-, and B-doped few-layer graphene by chemical vapor deposition technique and their superior glucose electrooxidation activity. International Journal of Energy Research 2019; 43 (14): 8204-8216. doi: 10.1002/ er.4817
  • 20. El-Nagar GA, Derr I, Fetyan A, Roth C. One-pot synthesis of a high performance chitosan-nickel oxyhydroxide nanocomposite for glucose fuel cell and electro-sensing applications. Applied Catalysis B: Environmental 2017; 204: 185-199. doi: 10.1016/j.apcatb.2016.11.031
  • 21. Song BY, Li YS, He YL, Cheng ZD. Anode structure design for the high-performance anion-exchange membrane direct glucose fuel cell. Energy Procedia 2014; 61: 2118-2122. doi: 10.1016/j.egypro.2014.12.089
  • 22. Basu D, Basu S. Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. International Journal of Hydrogen Energy 2012; 37 (5): 4678-4684. doi: 10.1016/j.ijhydene.2011.04.158
  • 23. Kerzenmacher S, Ducrée J, Zengerle R, Von Stetten F. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. Journal of Power Sources 2008; 182 (1): 1-17. doi: 10.1016/j.jpowsour.2008.03.031
  • 24. Yang YL, Liu XH, Hao MQ, Zhang PP. Performance of a low-cost direct glucose fuel cell with an anion-exchange membrane. International Journal of Hydrogen Energy 2015; 40 (34): 10979-10984. doi: 10.1016/j.ijhydene.2015.05.192
  • 25. Navaee A, Narimani M, Korani A, Ahmadi R, Salimi A, et al. Bimetallic $Fe_{15}Pt_{85}$ nanoparticles as an effective anodic electrocatalyst for non-enzymatic glucose/oxygen biofuel cell. Electrochimica Acta 2016; 208: 325-333. doi: 10.1016/j.electacta.2016.05.033
  • 26. Eshghi A. Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation. International Journal of Hydrogen Energy 2017; 42 (22): 15064-15072. doi: 10.1016/j.ijhydene.2017.04.288
  • 27. Gao M, Liu X, Irfan M, Shi J, Wang X et al. Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. International Journal of Hydrogen Energy 2018; 43 (3): 1805-1815. doi: 10.1016/j.ijhydene.2017.11.114
  • 28. Li L, Scott K, Yu EH. A direct glucose alkaline fuel cell using MnO2 –carbon nanocomposite supported gold catalyst for anode glucose oxidation. Journal of Power Sources 2013; 221: 1-5. doi: 10.1016/j.jpowsour.2012.08.021
  • 29. Lemoine C, Dubois L, Napporn TW, Servat K, Kokoh KB. Electrochemical energy conversion from direct oxidation of glucose on active electrode materials. Electrocatalysis 2019; 11: 170–179. doi: 10.1007/s12678-019-00570-1
  • 30. Caglar A, Ulas B, Sahin O, Kivrak H. Few-layer graphene coated on indium tin oxide electrodes prepared by chemical vapor deposition and their enhanced glucose electrooxidation activity. Energy Storage 2019; 1 (4): e73. doi: 10.1002/est2.73
  • 31. Huynh TTK, Tran TQN, Yoon HH, Kim W-J, Kim IT. AgNi@ ZnO nanorods grown on graphene as an anodic catalyst for direct glucose fuel cells. Korean Journal of Chemical Engineering 2019; 36 (7): 1193-1200. doi: 10.1007/s11814-019-0293-z
  • 32. Song S, Wang K, Yan L, Brouzgou A, Zhang Y et al. Ceria promoted Pd/C catalysts for glucose electrooxidation in alkaline media. Applied Catalysis B: Environmental 2015; 176: 233-239. doi: 10.1016/j.apcatb.2015.03.059
  • 33. Dong F, Liu X, Irfan M, Yang L, Li S et al. Macaroon-like $FeCo_2O_4$ modified activated carbon anode for enhancing power generation in direct glucose fuel cell. International Journal of Hydrogen Energy 2019; 44 (16): 8178-8187. doi: 10.1016/j.ijhydene.2019.02.031
  • 34. Rafaïdeen T, Baranton S, Coutanceau C. Highly efficient and selective electrooxidation of glucose and xylose in alkaline medium at carbon supported alloyed PdAu nanocatalysts. Applied Catalysis B: Environmental 2019; 243: 641-656. doi: 10.1016/j.apcatb.2018.11.006
  • 35. Chai D, Zhang X, Chan SH, Li G. Facile aqueous phase synthesis of Pd3 Cu–B/C catalyst for enhanced glucose electrooxidation. Journal of the Taiwan Institute of Chemical Engineers 2019; 95: 139-146. doi: 10.1016/j.jtice.2018.10.009
  • 36. Yan L, Brouzgou A, Meng Y, Xiao M, Tsiakaras P et al. Efficient and poison-tolerant $Pd_xAu_y/C$ binary electrocatalysts for glucose electrooxidation in alkaline medium. Applied Catalysis B: Environmental 2014; 150: 268-274. doi: 10.1016/j.apcatb.2013.12.026
  • 37. Chai D, Wang W, Wang F, Kang Y, Yang Y et al. A facile precipitation procedure for synthesis of binary Sn-Co oxide promoting Pd catalyst towards glucose electrooxidation. Electrochima Acta 2016; 189: 295-302. doi: 10.1016/j.electacta.2015.12.071
  • 38. Brouzgou A, Yan L, Song S, Tsiakaras P. Glucose electrooxidation over Pdx Rh/C electrocatalysts in alkaline medium. Applied Catalysis B: Environmental 2014; 147: 481-489. doi: 10.1016/j.apcatb.2013.09.024
  • 39. Cuevas-Muñiz F, Guerra-Balcázar M, Castaneda F, Ledesma-García J, Arriaga L. Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell. Journal of Power Sources 2011; 196 (14): 5853-5857. doi: 10.1016/j. jpowsour.2011.02.081
  • 40. Brouzgou A, Song S, Tsiakaras P. Carbon-supported PdSn and $Pd_3Sn_2$ anodes for glucose electrooxidation in alkaline media. Applied Catalysis B: Environmental. 2014; 158: 209-216. doi: 10.1016/j.apcatb.2014.03.051
  • 41. Basu D, Basu S. A study on direct glucose and fructose alkaline fuel cell. Electrochima Acta 2010; 55 (20): 5775-5779. doi: 10.1016/j. electacta.2010.05.016
  • 42. Basu D, Basu S. Synthesis, characterization and application of platinum based bimetallic catalysts for direct glucose alkaline fuel cell. Electrochimica Acta 2011; 56 (17): 6106-6113. doi: 10.1016/j.electacta.2011.04.072
  • 43. Ji Y, Liu J, Liu X, Yuen MM, Fu X-Z et al. 3D porous Cu@ Cu2 O films supported Pd nanoparticles for glucose electrocatalytic oxidation. Electrochima Acta 2017; 248: 299-306. doi: 10.1016/j.electacta.2017.07.100
  • 44. Kivrak H, Alal O, Atbas D. Efficient and rapid microwave-assisted route to synthesize Pt–MnOx hydrogen peroxide sensor. Electrochima Acta 2015; 176: 497-503. doi: 10.1016/j.electacta.2015.06.151
  • 45. Geng G, Chen P, Guan B, Liu Y, Yang C et al. Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors. The Royal Society of Chemistry Advance 2017; 7 (82): 51838-51846. doi: 10.1039/C7RA11188F
  • 46. Ballarin B, Cassani M, Tonelli D, Boanini E, Albonetti S et al. Gold nanoparticle-containing membranes from in situ reduction of a gold (III)− aminoethylimidazolium aurate salt. The Journal of Physical Chemistry C 2010; 114 (21): 9693-9701. doi: 10.1021/jp1024262
  • 47. Lin YC, Lee MW. $Bi_2S_3$ liquid-junction semiconductor-sensitized SnO2 solar cells. Journal of the Electrochemical Society 2014; 161 (1): H1-H5. doi: 10.1149/2.002401jes
  • 48. Akbari A, Khammar M, Taherzadeh D, Rajabian A, Zak AK et al. Zinc-doped cerium oxide nanoparticles: sol-gel synthesis, characterization, and investigation of their in vitro cytotoxicity effects. Journal of Molecular Structure 2017; 1149: 771-776. doi: 10.1016/j. molstruc.2017.08.069
  • 49. Arbag H, Tasdemir HM, Yagizatli Y, Kucuker M, Yasyerli S. Effect of preparation technique on the performance of Ni and Ce incorporated modified alumina catalysts in CO2 reforming of methane. Catalysis Letters 2020; 150 (11): 3256-3268. doi: 10.1007/s10562-020-03228-6
  • 50. Kakaei K, Hamidi M, Kakaei N. Simultaneous electro-synthesis of polyaniline graphene nanocomposite in dilute graphene oxide as dopant and aniline by electrochemical method and its high specific capacitance. Materials Research Express 2019; 6 (8): 085623. doi: 10.1088/2053-1591/ab2312
  • 51. Sing KS, Williams RT. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology 2004; 22 (10): 773-782. doi: 10.1260/0263617053499032
  • 52. Basu D, Basu S. Synthesis and characterization of Pt–Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. International Journal of Hydrogen Energy 2011; 36 (22): 14923-14929. doi: 10.1016/j.ijhydene.2011.03.042
  • 53. Bagheri R, Ghaedi M, Asfaram A, Alipanahpour Dil E, Javadian H. RSM-CCD design of malachite green adsorption onto activated carbon with multimodal pore size distribution prepared from Amygdalus scoparia: kinetic and isotherm studies. Polyhedron 2019; 171: 464-472. doi: 10.1016/j.poly.2019.07.037
  • 54. Pollet BG. The use of ultrasound for the fabrication of fuel cell materials. International Journal of Hydrogen Energy 2010; 35 (21): 11986- 12004. doi: 10.1016/j.ijhydene.2010.08.021
APA er ö, Ulas B, Demir Kivrak H (2021). Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. , 1173 - 1188. 10.3906/kim-2102-16
Chicago er ömer faruk,Ulas Berdan,Demir Kivrak Hilal Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. (2021): 1173 - 1188. 10.3906/kim-2102-16
MLA er ömer faruk,Ulas Berdan,Demir Kivrak Hilal Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. , 2021, ss.1173 - 1188. 10.3906/kim-2102-16
AMA er ö,Ulas B,Demir Kivrak H Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. . 2021; 1173 - 1188. 10.3906/kim-2102-16
Vancouver er ö,Ulas B,Demir Kivrak H Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. . 2021; 1173 - 1188. 10.3906/kim-2102-16
IEEE er ö,Ulas B,Demir Kivrak H "Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology." , ss.1173 - 1188, 2021. 10.3906/kim-2102-16
ISNAD er, ömer faruk vd. "Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology". (2021), 1173-1188. https://doi.org/10.3906/kim-2102-16
APA er ö, Ulas B, Demir Kivrak H (2021). Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. Turkish Journal of Chemistry, 45(4), 1173 - 1188. 10.3906/kim-2102-16
Chicago er ömer faruk,Ulas Berdan,Demir Kivrak Hilal Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. Turkish Journal of Chemistry 45, no.4 (2021): 1173 - 1188. 10.3906/kim-2102-16
MLA er ömer faruk,Ulas Berdan,Demir Kivrak Hilal Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. Turkish Journal of Chemistry, vol.45, no.4, 2021, ss.1173 - 1188. 10.3906/kim-2102-16
AMA er ö,Ulas B,Demir Kivrak H Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. Turkish Journal of Chemistry. 2021; 45(4): 1173 - 1188. 10.3906/kim-2102-16
Vancouver er ö,Ulas B,Demir Kivrak H Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology. Turkish Journal of Chemistry. 2021; 45(4): 1173 - 1188. 10.3906/kim-2102-16
IEEE er ö,Ulas B,Demir Kivrak H "Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology." Turkish Journal of Chemistry, 45, ss.1173 - 1188, 2021. 10.3906/kim-2102-16
ISNAD er, ömer faruk vd. "Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology". Turkish Journal of Chemistry 45/4 (2021), 1173-1188. https://doi.org/10.3906/kim-2102-16