Yıl: 2021 Cilt: 45 Sayı: 4 Sayfa Aralığı: 1257 - 1269 Metin Dili: İngilizce DOI: 10.3906/kim-2012-11 İndeks Tarihi: 29-06-2022

Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent

Öz:
The templated porous carbons were prepared from sucrose by one-pot method. In this method in which the pre-synthesis of the hard template is eliminated, the porous carbons were produced by organic-inorganic self-assembly of sucrose, tetraethyl ortosilicate (TEOS), Pluronic P123 and n-butanol in an acidic medium, and subsequent carbonization. The synthesis parameters such as sucrose amount, TEOS molar ratio and carbonization temperature were evaluated for describing their effects on the pore structures of the synthesized carbons. The prepared porous carbons were characterized by $N_2$adsorption, thermogravimetric analysis (TGA), Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The carbon dioxide adsorption uptakes of the obtained porous carbons were determined at 1 bar and 273 K. The templated carbon obtained with the lowest TEOS molar ratio exhibited the highest BET surface area of $1289 m^2 /g$ and micropore volume of $0.467 cm^3 /g$, and showed the highest $CO_2$ uptake of 2.28 mmol/g.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kaur B, Gupta RK, Bhunia H. Chemically activated nanoporous carbon adsorbents from waste plastic for $CO_2$ capture: breakthrough adsorption study. Microporous and Mesoporous Materials 2019; 282: 146-158. doi: 10.1016/j.micromeso.2019.03.025
  • 2. Yang G, Song S, Li J, Tang Z, Ye J et al. Preparation and $CO_2$ adsorption properties of porous carbon by hydrothermal carbonization of tree leaves. Journal of Materials Science & Technology 2019; 35: 875-884. doi: 10.1016/j.jmst.2018.11.019
  • 3. Abd AA, Naji SZ, Hashim AS, Othman MR. Carbon dioxide removal through physical adsorption using carbonaceous and noncarbonaceous adsorbents: a review. Journal of Environmental Chemical Engineering 2020; 8: 104142. doi: 10.1016/j.jece.2020.104142
  • 4. Zhang X, Li W, Lu A. Designed porous carbon materials for efficient $CO_2$ adsorption and separation. New Carbon Materials 2015; 30 (6): 481-501. doi: 10.1016/S1872-5805(15)60203-7
  • 5. Wu X, Zhang C, Tian Z, Cai J. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture. New Carbon Materials 2018; 33 (3): 252-261. doi: 10.1016/S1872-5805(18)60338-5
  • 6. Zhang W, Bao Y, Bao A. Preparation of nitrogen-doped hierarchical porous carbon materials by a template-free method and application to $CO_2$ capture. Journal of Environmental Chemical Engineering 2020; 8: 103732. doi: 10.1016/j.jece.2020.103732
  • 7. Acar B, Başar MS, Eropak BM, Caglayan BS, Aksoylu AE. $CO_2$ adsorption over modified AC samples: a new methodology for determining selectivity. Catalysis Today 2018; 301: 112-124. doi: 10.1016/j.cattod.2017.10.011
  • 8. Huang G, Liu Y, Wu X, Cai J. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Materials 2019; 34 (3): 247-257. doi: 10.1016/S1872-5805(19)60014-4
  • 9. Gouveiaa LGT, Agustini CB, Perez-Lopez OW, Gutterres M. $CO_2$ adsorption using solids with different surface and acid-base properties. Journal of Environmental Chemical Engineering 2020; 8: 103823. doi: 10.1016/j.jece.2020.103823
  • 10. Sibera D, Narkiewicz U, Kapica J, Serafin J, Michalkiewicz B et al. Preparation and characterisation of carbon spheres for carbon dioxide capture. Journal of Porous Materials 2019; 26: 19-27. doi: 10.1007/s10934-018-0601-8
  • 11. Sun Y, Li K, Zhao J, Wang J, Tang N et al. Nitrogen and sulfur co-doped microporous activated carbon macro-spheres for $CO_2$ capture. Journal of Colloid and Interface Science 2018; 526: 174-183. doi: 10.1016/j.jcis.2018.04.101
  • 12. Thakkar H, Eastman S, Hajari A, Rownaghi AA, Knox JO et al. 3D-printed zeolite monoliths for $CO_2$ removal from enclosed environments. ACS Applied Materials & Interfaces 2016; 8: 27753-27761. doi: 10.1021/acsami.6b09647
  • 13. Pham TD, Hudson MR, Brown CM, Lobo RF. Molecular basis for the high CO2 adsorption capacity of chabazite zeolites. ChemSusChem 2014; 7: 3031-3038. doi: 10.1002/cssc.201402555
  • 14. Alkhabbaz MA, Bollini P, Foo GS, Sievers C, Jones CW. Important roles of enthalpic and entropic contributions to $CO_2$ capture from simulated flue gas and ambient air using mesoporous silica grafted amines. Journal of the American Chemical Society 2014; 136: 13170- 13173. doi: 10.1021/ja507655x
  • 15. Cecilia JA, Vilarrasa-García E, Cavalcante Jr. CL, Azevedo DCS, Franco F et al. Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for $CO_2$ capture. Journal of Environmental Chemical Engineering 2018; 6: 4573-4587. doi: 10.1016/j.jece.2018.07.001
  • 16. Yoon M, Moon D. New Zr (IV) based metal-organic framework comprising a sulfur-containing ligand: Enhancement of $CO_2 and H_2$ storage capacity. Microporous and Mesoporous Materials 2015; 215: 116-122. doi: 10.1016/j.micromeso.2015.05.030
  • 17. Yu J, Wu Y, Balbuena PB. Response of metal sites toward water effects on postcombustion $CO_2$ capture in metal−organic frameworks. ACS Sustainable Chemistry & Engineering 2016; 4: 2387-2394. doi: 10.1021/acssuschemeng.6b00080
  • 18. Belmabkhout Y, Guillerm V, Eddaoudi M. Low concentration CO2 capture using physical adsorbents: are metal–organic frameworks becoming the new benchmark materials? 2016; Chemical Engineering Journal 296: 386-397. doi: 10.1016/j.cej.2016.03.124
  • 19. Siegelman RL, McDonald TM, Gonzalez MI, Martell JD, Milner PJ et al. Controlling cooperative $CO_2$ adsorption in diamine-appended Mg2(dobpdc) metal−organic frameworks. Journal of the American Chemical Society 2017; 139: 10526-10538. doi: 10.1021/jacs.7b05858
  • 20. Patel HA, Karadas F, Byun J, Park J, Deniz E et al. Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal. Advanced Functional Materials 2013; 23: 2270-2276. doi: 10.1002/adfm.201202442
  • 21. Mane S, Gao ZY, Li YX, Xue DM, Liu XQ et al. Fabrication of microporous polymers for selective $CO_2$ capture: the significant role of crosslinking and crosslinker length. Journal of Materials Chemistry A 2017; 5: 23310-23318. doi: 10.1039/C7TA07188D
  • 22. Patel HA, Karadas F, Canlier A, Park J, Deniz E et al. High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. Journal of Materials Chemistry A 2012; 22: 8431-8437. doi: 10.1039/C2JM30761H
  • 23. Han J, Zhang L, Zhao B, Qin L, Wang Y et al. The N-doped activated carbon derived from sugarcane bagasse for $CO_2$ adsorption. Industrial Crops & Products 2019; 128: 290-297. doi: 10.1016/j.indcrop.2018.11.028
  • 24. Shi J, Yan N, Cui H, Liu Y, Weng Y. Sulfur doped microporous carbons for $CO_2$ adsorption. Journal of Environmental Chemical Engineering 2017; 5: 4605-4611. doi: 10.1016/j.jece.2017.09.002
  • 25. Jribi S, Miyazaki T, Saha BB, Pal A, Younes MM et al. Equilibrium and kinetics of $CO_2$ adsorption onto activated carbon. International Journal of Heat and Mass Transfer 2017; 108: 1941-1946. doi: 10.1016/j.ijheatmasstransfer.2016.12.114
  • 26. Li D, Zhou J, Wang Y, Tian Y, Wei L et al. Effects of activation temperature on densities and volumetric $CO_2$ adsorption performance of alkali-activated carbons. Fuel 2019; 238: 232-239. doi: 10.1016/j.fuel.2018.10.122
  • 27. Tiwari D, Kaur S, Bhunia H, Bajpai PK. $CO_2$ adsorption on oxygen enriched nanostructured carbons derived from silica templated resorcinol-formaldehyde. Journal of Industrial and Engineering Chemistry 2018; 65: 146-155. doi: 10.1016/j.jiec.2018.04.023
  • 28. Jang E, Choi SW, Lee KB. Effect of carbonization temperature on the physical properties and $CO_2$ adsorption behavior of petroleum cokederived porous carbon. Fuel 2019; 248: 85-92. doi: 10.1016/j.fuel.2019.03.051
  • 29. Jin Z, Wang J, Zhao R, Guan T, Zhang D et al. Synthesis of S, N co-doped porous carbons from polybenzoxazine for $CO_2$capture. New Carbon Materials 2018; 33 (5): 392-401. doi: 10.1016/S1872-5805(18)60347-6
  • 30. Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MRM. Physical synthesis and characterization of activated carbon from date seeds for $CO_2$ capture. Journal of Environmental Chemical Engineering 2018; 6: 4245-4252. doi: 10.1016/j.jece.2018.06.030
  • 31. Fiuza-Jr RA, Andrade RC, Andrade HMC. $CO_2$ capture on KOH-activated carbons derived from yellow mombin fruit stones. Journal of Environmental Chemical Engineering 2016; 4: 4220-4236. doi: 10.1016/j.jece.2016.09.025
  • 32. Boujibar O, Souikny A, Ghamouss F, Achak O, Dahbi M et al. $CO_2$ capture using N-containing nanoporous activated carbon obtained from argan fruit shells. Journal of Environmental Chemical Engineering 2018; 6: 1995-2002. doi: 10.1016/j.jece.2018.03.005
  • 33. Kongnoo A, Intharapat P, Worathanakul P, Phalakornkule C. Diethanolamine impregnated palm shell activated carbon for $CO_2$ adsorption at elevated temperatures. Journal of Environmental Chemical Engineering 2016; 4: 73-81. doi: 10.1016/j.jece.2015.11.015
  • 34. Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MRM. Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. Journal of Environmental Chemical Engineering 2020; 8: 104257. doi: 10.1016/j.jece.2020.104257
  • 35. Zhang C, Wang R, Wang Y, Ren G, Zhang X et al. Synthesis of milimeter-sized porous carbon spheres derived from different precursors for $CO_2$ capture. Journal of Porous Materials 2020; doi: 10.1007/s10934-020-00967-0
  • 36. Barczak M, Michalak-Zwierz K, Gdula K, Tyszczuk-Rotko K, Dobrowolski R et al. Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions. Microporous and Mesoporous Materials 2015; 211: 162-173. doi: 10.1016/j.micromeso.2015.03.010
  • 37. Lee SY, Park SJ. A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry 2015; 23: 1-11, doi: 10.1016/j.jiec.2014.09.001
  • 38. Ryoo R, Joo, SH, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B 1999; 103 (37): 7743-7746. doi: 10.1021/jp991673a.
  • 39. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society 2000; 122: 10712-10713. doi:10.1021/ja002261e
  • 40. Ting C, Wu H, Vetrivel S, Saikia D, Pan Y et al. A one-pot route to synthesize highly ordered mesoporous carbons and silicas through organic-inorganic self-assembly of triblock copolymer, sucrose and silica. Microporous and Mesoporous Materials 2010; 128: 1-11. doi: 10.1016/j.micromeso.2009.07.018
  • 41. Prabhu A, Al Shoaibi A, Srinivasakannan C. Synthesis and characterization of mesoporous carbon by simple one pot method. Materials Letters 2014; 136: 81-84. doi: 10.1016/j.matlet.2014.08.012
  • 42. Rehman A, Park SJ. Tunable nitrogen-doped microporous carbons: Delineating the role of optimum pore size for enhanced$CO_2$ adsorption. Chemical Engineering Journal 2019; 362: 731-742. doi: 10.1016/j.cej.2019.01.063
  • 43. Liu L, Lu J, Zhang Y, Liu M, Yu Y et al. Synthesis of nitrogen-doped graphitic carbon nanocapsules from a poly(ionic liquid) for$CO_2$ capture. New Carbon Materials 2017; 32 (4): 380-384. doi: 10.1016/S1872-5805(17)60129-X
  • 44. Tyagi D, Scholz K, Varma S, Bhattacharya K, Mali S et al. Development of Pt-carbon catalysts using MCM-41 template for HI decomposition reaction in S-I thermochemical cycle. International Journal of Hydrogen Energy; 2012; 37: 3062-3611. doi: 10.1016/j.ijhydene.2011.04.206
  • 45. Vinu A, Srinivasu P, Takahashi M, Mori T, Balasubramanian VV et al. Controlling the textural parameters of mesoporous carbon materials. Microporous and Mesoporous Materials 2007; 100: 20-26. doi: 10.1016/j.micromeso.2006.10.008
  • 46. Ignat M, Van Qers CJ, Vernimmen J, Mertens M, Potgieter-Vermaak S et al. Textural property tuning of ordered mesoporous carbon obtained by glycerol conversion using SBA-15 silica as template. Carbon 2010; 48: 1609-1618, doi: 10.1016/j.carbon.2009.12.062
  • 47. Kim HC, Hwang YK, Seo SJ, Huh S. Gas sorption and supercapacitive properties of hierarchical porous graphitic carbons prepared from the hard-templating of mesoporous $ZnO/Zn(OH)_2$ composite spheres. Journal of Colloid and Interface Science 2020; 564: 193-203. doi: 10.1016/j.jcis.2019.12.117
  • 48. Saha D, Deng S. Adsorption equilibrium and kinetics of $CO_2, CH_4, N_2O, and NH_3$ on ordered mesoporous carbon. Journal of Colloid and Interface Science 2010; 345: 402-409. doi: 10.1016/j.jcis.2010.01.076
  • 49. Shi J, Cui H, Xu J, Yan N, Liu Y. Design and fabrication of hierarchically porous carbon frameworks with $Fe_2O_3$ cubes as hard template for $CO_2$ adsorption. Chemical Engineering Journal 2020; 389: 124459. doi: 10.1016/j.cej.2020.124459
  • 50. Konnola R, Anirudhan TS. Efficient carbon dioxide capture by nitrogen and sulfur dual-doped mesoporous carbon spheres from polybenzoxazines synthesized by a simple strategy. Journal of Environmental Chemical Engineering 2020; 8: 103314. doi: 10.1016/j. jece.2019.103614
  • 51. Zhang H, Wang Z, Luo X, Lu J, Peng S et al. Constructing hierarchical porous carbons with interconnected micro-mesopores for enhanced $CO_2$ adsorption. Frontiers in Chemistry 2020; 7: 919. doi: 10.3389/fchem.2019.00919
APA Gürbüz M, TÜMSEK F (2021). Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. , 1257 - 1269. 10.3906/kim-2012-11
Chicago Gürbüz Meltem,TÜMSEK FATMA Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. (2021): 1257 - 1269. 10.3906/kim-2012-11
MLA Gürbüz Meltem,TÜMSEK FATMA Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. , 2021, ss.1257 - 1269. 10.3906/kim-2012-11
AMA Gürbüz M,TÜMSEK F Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. . 2021; 1257 - 1269. 10.3906/kim-2012-11
Vancouver Gürbüz M,TÜMSEK F Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. . 2021; 1257 - 1269. 10.3906/kim-2012-11
IEEE Gürbüz M,TÜMSEK F "Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent." , ss.1257 - 1269, 2021. 10.3906/kim-2012-11
ISNAD Gürbüz, Meltem - TÜMSEK, FATMA. "Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent". (2021), 1257-1269. https://doi.org/10.3906/kim-2012-11
APA Gürbüz M, TÜMSEK F (2021). Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. Turkish Journal of Chemistry, 45(4), 1257 - 1269. 10.3906/kim-2012-11
Chicago Gürbüz Meltem,TÜMSEK FATMA Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. Turkish Journal of Chemistry 45, no.4 (2021): 1257 - 1269. 10.3906/kim-2012-11
MLA Gürbüz Meltem,TÜMSEK FATMA Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. Turkish Journal of Chemistry, vol.45, no.4, 2021, ss.1257 - 1269. 10.3906/kim-2012-11
AMA Gürbüz M,TÜMSEK F Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. Turkish Journal of Chemistry. 2021; 45(4): 1257 - 1269. 10.3906/kim-2012-11
Vancouver Gürbüz M,TÜMSEK F Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent. Turkish Journal of Chemistry. 2021; 45(4): 1257 - 1269. 10.3906/kim-2012-11
IEEE Gürbüz M,TÜMSEK F "Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent." Turkish Journal of Chemistry, 45, ss.1257 - 1269, 2021. 10.3906/kim-2012-11
ISNAD Gürbüz, Meltem - TÜMSEK, FATMA. "Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent". Turkish Journal of Chemistry 45/4 (2021), 1257-1269. https://doi.org/10.3906/kim-2012-11