Yıl: 2021 Cilt: 5 Sayı: 2 Sayfa Aralığı: 93 - 100 Metin Dili: İngilizce DOI: 10.46460/ijiea.948297 İndeks Tarihi: 29-07-2022

Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material

Öz:
The objective of this study is to see for micro-milling of Ti6Al4V in the different parameters, how wear occurs on the face of the tool and how to evolve cutting temperature, forces, and chip formations with FEM. The effects of dry, liquid coolant and LN2-based cryogenic cooling applications at 50,100,150 m/s cutting speeds and 1,2,3 μm/dev feed rate were compared in micro-milling of Ti6Al4V alloy. At different parameters, internal and workpiece-cutting edges cryogenic (wacec) are simulated temperatures were observed. Cryogenic cooling, dry and liquid coolant applications perceived that tool wear, chip formation, strain, stresses, and shear forces interpreted with the FEM. Also, a mesh model based on Arbitrary Lagrangian-Eulerian (ALE) simulations and the Johnson-Cook Plasticity model for material plasticity failure criterion are used in this study. As a result, indicated that at the cutting velocity of 100 m/min, cryogenic cooling on the workpiece and cutting edges has caused into decreasing %57 of cutting temperature also by %54 lower tool wear was observed on the internal tool cryogenic, by %15 the shear stresses decreased on wacec in comparison to dry cutting.
Anahtar Kelime: Finite element method (FEM) micro milling cryogenic cooling

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Chae, J., Park, S. S., & Freiheit, T. (2006). Investigation of micro-cutting operations. International Journal of Machine Tools and Manufacture, 46(3-4), 313-332.
  • [2] Özel, T., Bártolo, P. J., Ceretti, E., Gay, J. D. C., Rodriguez, C. A., & Da Silva, J. V. L. (Eds.). (2016). Biomedical devices: design, prototyping, and manufacturing. John Wiley & Sons.
  • [3] 4- Robinson, G. M., & Jackson, M. J. (2005). A review of micro and nanomachining from a materials perspective. Journal of Materials Processing Technology, 167(2-3), 316-337.
  • [4] Ezugwu, E. O., & Wang, Z. M. (1997). Titanium alloys and their machinability—a review. Journal of materials processing technology, 68(3), 262-274.
  • [5] Robinson, G. M., Jackson, M. J., & Whitfield, M. D. (2007). A review of machining theory and tool wear with a view to developing micro and nano machining processes. Journal of Materials Science, 42(6), 2002-2015.
  • [6] Dadgari, A., Huo, D., & Swailes, D. (2018). Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al4V. Nanotechnology and Precision Engineering, 1(4), 218- 225.
  • [7] Vazquez, E., Gomar, J., Ciurana, J., & Rodríguez, C. A. (2015). Analyzing effects of cooling and lubrication conditions in micromilling of Ti6Al4V. Journal of Cleaner Production, 87, 906-913.
  • [8] Su, Y., He, N., Li, L., & Li, X. L. (2006). An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al4V. Wear, 261(7-8), 760-766.
  • [9] Debnath, S., Reddy, M. M., & Yi, Q. S. (2014). Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of cleaner production, 83, 33-47.
  • [10] 11-. Pervaiz, S., Deiab, I., Rashid, A., & Nicolescu, M. (2017). Minimal quantity cooling lubrication in turning of Ti6Al4V: influence on surface roughness, cutting force and tool wear. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(9), 1542-1558.
  • [11] Park, K. H., Suhaimi, M. A., Yang, G. D., Lee, D. Y., Lee, S. W., & Kwon, P. (2017). Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing, 18(1), 5-14.
  • [12] Jebaraj, M., & Pradeep Kumar, M. (2019). Effect of cryogenic CO2 and LN2 coolants in milling of aluminum alloy. Materials and Manufacturing Processes, 34(5), 511- 520.
  • [13] Shah, P., & Khanna, N. (2020). Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribology International, 148, 106314.
  • [14] Veiga, C., Davim, J. P., & Loureiro, A. J. R. (2013). Review on machinability of titanium alloys: the process perspective. Rev. Adv. Mater. Sci, 34(2), 148-164.
  • [15] Rotella, G., Dillon, O. W., Umbrello, D., Settineri, L., & Jawahir, I. S. (2014). The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. The International Journal of Advanced Manufacturing Technology, 71(1-4), 47-55.
  • [16] Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface roughness in machining: a review. International journal of machine tools and manufacture, 43(8), 833-844.
  • [17] Jawahir, I. S., Attia, H., Biermann, D., Duflou, J., Klocke, F., Meyer, D., ... & Umbrello, D. (2016). Cryogenic manufacturing processes. CIRP annals, 65(2), 713-736.
  • [18] Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir, I. S. (2013). Recent advances in modelling of metal machining processes. Cirp Annals, 62(2), 695-718.
  • [19] - Caudill, J., Schoop, J., & Jawahir, I. S. (2019). Numerical modeling of cutting forces and temperature distribution in high speed cryogenic and flood-cooled milling of Ti-6Al4V. Procedia CIRP, 82, 83-88.
  • [20] - Davoudinejad, A., Li, D., Zhang, Y., & Tosello, G. (2019). Optimization of corner micro end milling by finite element modelling for machining thin features. Procedia CIRP, 82, 362-367.
  • [21] Attanasio, A., Abeni, A., Özel, T., & Ceretti, E. (2019). Finite element simulation of high speed micro milling in the presence of tool run-out with experimental validations. The International Journal of Advanced Manufacturing Technology, 100(1-4), 25-35.
  • [22] Umbrello, D., Bordin, A., Imbrogno, S., & Bruschi, S. (2017). 3D finite element modelling of surface modification in dry and cryogenic machining of EBM Ti6Al4V alloy. CIRP Journal of Manufacturing Science and Technology, 18, 92-100.
  • [23] - Pashaki, P. V., & Pouya, M. (2017). Investigation of highspeed cryogenic machining based on finite element approach. Latin American Journal of Solids and Structures, 14, 629-642.
  • [24] Özel, T., Olleak, A., & Thepsonthi, T. (2017). Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Production Engineering, 11(4), 435-444.
  • [25] Imbrogno, S., Sartori, S., Bordin, A., Bruschi, S., & Umbrello, D. (2017). Machining simulation of Ti6Al4V under dry and cryogenic conditions. Procedia CIRP, 58, 475-480.
  • [26] Mamedov, A., & Lazoglu, I. (2016). Thermal analysis of micro milling titanium alloy Ti–6Al–4V. Journal of Materials Processing Technology, 229, 659-667.
  • [27] Tounsi, N., & El-Wardany, T. (2015). Finite element analysis of chip formation and residual stresses induced by sequential cutting in side milling with microns to sub-micron uncut chip thickness and finite cutting edge radius. Advances in Manufacturing, 3(4), 309-322.
  • [28] Rao, B., Dandekar, C. R., & Shin, Y. C. (2011). An experimental and numerical study on the face milling of Ti– 6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology, 211(2), 294-304.
  • [29] Ortiz-de-Zarate, G., Madariaga, A., Garay, A., Azpitarte, L., Sacristan, I., Cuesta, M., & Arrazola, P. J. (2018). Experimental and FEM analysis of surface integrity when broaching Ti64. Procedia Cirp, 71, 466-471.
  • [30] Johnson, G.R. and Cook, W.H. (1983) A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. Proceedings 7th International Symposium on Ballistics, The Hague, 19-21 April 1983, 541-547.
  • [31] Lee, W. S., & Lin, C. F. (1998). Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Materials Science and Engineering: A, 241(1-2), 48-59.
  • [32] Calamaz, M., Coupard, D., & Girot, F. (2008). A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al– 4V. International Journal of Machine Tools and Manufacture, 48(3-4), 275-288.
  • [33] Hong, S. Y., & Ding, Y. (2001). Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al4V. International Journal of Machine Tools and Manufacture, 41(10), 1417-1437.
  • [34] Usui, E., Shirakashi, T., & Kitagawa, T. (1978). Analytical prediction of three dimensional cutting process—Part 3: Cutting temperature and crater wear of carbide tool.
  • [35] Pu, Z., Umbrello, D., Dillon Jr, O. W., & Jawahir, I. S. (2014). Finite element simulation of residual stresses in cryogenic machining of AZ31B Mg alloy. Procedia Cirp, 13, 282-287.
  • [36] Umbrello, D., Caruso, S., & Imbrogno, S. (2016). Finite element modelling of microstructural changes in dry and cryogenic machining AISI 52100 steel. Materials Science and Technology, 32(11), 1062-1070.
  • [37] Shen, G. E., Gandhi, A., Arici, O., & Sutherland, J. W. (2001). A model for workpiece temperatures during peripheral milling including the effect of cutting fluids. Transactions-North American Manufacturing Research Institution Of Sme, 265-272.
  • [38] Lee, W. S., & Lin, C. F. (1998). High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests. Journal of Materials Processing Technology, 75(1-3), 127-136.
  • [39] Rotella, G., & Umbrello, D. (2014). Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy. Cirp Annals, 63(1), 69-72.
  • [40] Hong, S. Y., & Ding, Y. (2001). Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al4V. International Journal of Machine Tools and Manufacture, 41(10), 1417-1437.
  • [41] Ahmed, L. S., & Pradeep Kumar, M. (2017). Investigation of cryogenic cooling effect in reaming Ti-6AL-4V alloy. Materials and Manufacturing Processes, 32(9), 970- 978.
  • [42] Shokrani, A., Dhokia, V., Muñoz-Escalona, P., & Newman, S. T. (2013). State-of-the-art cryogenic machining and processing. International Journal of Computer Integrated Manufacturing, 26(7), 616-648.
  • [43] Davoudinejad, A., Chiappini, E., Tirelli, S., Annoni, M., & Strano, M. (2015). Finite element simulation and validation of chip formation and cutting forces in dry and cryogenic cutting of Ti–6Al–4V. Procedia manufacturing, 1, 728-739.
  • [44] Peng, Z., Li, J., Yan, P., Gao, S., Zhang, C., & Wang, X. (2018). Experimental and simulation research on micromilling temperature and cutting deformation of heatresistance stainless steel. The International Journal of Advanced Manufacturing Technology, 95(5), 2495-2508.
  • [45] Jerold, B. D., & Kumar, M. P. (2013). The influence of cryogenic coolants in machining of Ti–6Al–4V. Journal of manufacturing science and engineering, 135(3).
  • [46] Shokrani, A., Dhokia, V., Muñoz-Escalona, P., & Newman, S. T. (2013). State-of-the-art cryogenic machining and processing. International Journal of Computer Integrated Manufacturing, 26(7), 616-648.
APA Oymak M, Bahçe E, GEZER I (2021). Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. , 93 - 100. 10.46460/ijiea.948297
Chicago Oymak Mehmet Akif,Bahçe Erkan,GEZER IBRAHIM Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. (2021): 93 - 100. 10.46460/ijiea.948297
MLA Oymak Mehmet Akif,Bahçe Erkan,GEZER IBRAHIM Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. , 2021, ss.93 - 100. 10.46460/ijiea.948297
AMA Oymak M,Bahçe E,GEZER I Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. . 2021; 93 - 100. 10.46460/ijiea.948297
Vancouver Oymak M,Bahçe E,GEZER I Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. . 2021; 93 - 100. 10.46460/ijiea.948297
IEEE Oymak M,Bahçe E,GEZER I "Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material." , ss.93 - 100, 2021. 10.46460/ijiea.948297
ISNAD Oymak, Mehmet Akif vd. "Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material". (2021), 93-100. https://doi.org/10.46460/ijiea.948297
APA Oymak M, Bahçe E, GEZER I (2021). Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications, 5(2), 93 - 100. 10.46460/ijiea.948297
Chicago Oymak Mehmet Akif,Bahçe Erkan,GEZER IBRAHIM Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications 5, no.2 (2021): 93 - 100. 10.46460/ijiea.948297
MLA Oymak Mehmet Akif,Bahçe Erkan,GEZER IBRAHIM Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications, vol.5, no.2, 2021, ss.93 - 100. 10.46460/ijiea.948297
AMA Oymak M,Bahçe E,GEZER I Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications. 2021; 5(2): 93 - 100. 10.46460/ijiea.948297
Vancouver Oymak M,Bahçe E,GEZER I Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material. International Journal of Innovative Engineering Applications. 2021; 5(2): 93 - 100. 10.46460/ijiea.948297
IEEE Oymak M,Bahçe E,GEZER I "Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material." International Journal of Innovative Engineering Applications, 5, ss.93 - 100, 2021. 10.46460/ijiea.948297
ISNAD Oymak, Mehmet Akif vd. "Investigation Of Cryogenic Cooling Effect With Finite Element Method In Micro Milling Of Ti6Al4V Material". International Journal of Innovative Engineering Applications 5/2 (2021), 93-100. https://doi.org/10.46460/ijiea.948297