Yıl: 2021 Cilt: 45 Sayı: 5 Sayfa Aralığı: 1336 - 1352 Metin Dili: İngilizce DOI: 10.3906/kim-2101-50 İndeks Tarihi: 30-06-2022

Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support

Öz:
A series of thin Pt-Co films with different metal ratios were deposited by using the sequential cosputtering directly on a commercial hydrophobic carbon paper substrate at room temperature and in ultra-high vacuum (UHV) conditions. Their electrocatalytic properties toward the oxygen reduction reaction were investigated in 0.5 M $H_2 SO_4$ solution by means of cyclic voltammetry (CV) and linear sweep voltammetry (LSV) on rotating disc electrode (RDE). The results showed that Pt particles, deposited by dc-magnetron gun, surround the large Co-clusters deposited by rf-magnetron gun. In addition, the increase of Co content led to an increase in the electrochemical active surface area $(EASA) from 23.75 m_2 /gPt to 47.54 m_2 /gPt for pure Pt and Pt:Co (1:3),$ respectively, which corresponded the improvement of the utilization of Pt by a factor of 1.91. This improvement indicated that the sequential magnetron cosputtering was one of the essential technique to deposit homogeneous metal clusters with desirable size on the gas diffusion layer by adjustment plasma parameters.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Sındıraç C, Buyukaksoy A, Akkurt S. Electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2-δ composite SOFC cathodes fabricated by electrocatalyst and/or electrocatalyst-ionic conductor infiltration. Journal of Sol-Gel Science and Technology 2019; 92: 45-56. doi: 10.1007/s10971-019-05073-5
  • 2. Sındıraç C, Çakırlar S, Buyukaksoy A, Akkurt S. Lowering the sintering temperature of solid oxide fuel cell electrolytes by infiltration. Journal of the European Ceramic Society 2019; 39 (2-3): 409-417. doi: 10.1016/j.jeurceramsoc.2018.09.029
  • 3. Wang S, Jiang SP. Prospects of fuel cell technologies. National Science Review 2017; 4 (2):163-166. doi: 10.1093/nsr/nww099
  • 4. Sinigaglia T, Lewiski F, Martins MES, Siluk JCM. Production, storage, fuel stations of hydrogen and its utilization in automotive applications-a review. International Journal of Hydrogen Energy 2017; 42 (39): 24597-24611. doi: 10.1016/j.ijhydene.2017.08.063
  • 5. M. Min, Kim H. Performance and stability studies of PtCr/C alloy catalysts for oxygen reduction reaction in low temperature fuel cells. International Journal of the Hydrogen Energy 2016; 41 (39): 17557-17566. doi: 10.1016/j.ijhydene.2016.07.175
  • 6. Hussain S, Erikson H, Kongi N, Merisalu M. Heat-treatment effects on the ORR activity of Pt nanoparticles deposited on multi-walled carbon nanotubes using magnetron sputtering technique. International Journal of the Hydrogen Energy 2017; 42 (9): 5958-5970. doi: 10.1016/j.ijhydene.2016.11.164
  • 7. Bolahaga Randrianarizafy, Pascal Schott, Mathias Gerard, Yann Bultel. Modelling Carbon Corrosion during a PEMFC Startup: Simulation of Mitigation Strategies; Energies 2020; 13: 2338; doi: 10.3390/en13092338
  • 8. Thompsett D. Pt alloys as oxygen reduction catalysts, in: W. Vielstich, H. Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications, vol. 3, Wiley, Chichester, UK, 2003, p. 467 (Chapter 37).
  • 9. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental 2005; 56: 9–35
  • 10. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells: From Fundamentals Syststem 2001; 1: 105-116.
  • 11. Schmidt TJ, Stamenkovic V, Arenz M, Markovic NM, Ross PN. Oxygen electrocatalysis in alkaline electrolyte: Pt(hkl), Au(hkl) and the effect of Pd-modification. Electrochimica Acta 2002; 47 (22-23): 3765-3776. doi: 10.1016/S0013-4686(02)00347-X
  • 12. Li M, Lei Y, Sheng N, Ohtsuka T. Preparation of low-platinum-content platinum–nickel, platinum–cobalt binary alloy and platinum– nickel–cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells. Journal of Power Sources 2015; 294: 420-429. doi: 10.1016/j.jpowsour.2015.06.084
  • 13. Li Z, Zeng R, Wang L, Jiang L, Wang S et al. A simple strategy to form hollow Pt3Co alloy nanosphere with ultrathin Pt shell with significant enhanced oxygen reduction reaction activity. International Journal of the Hydrogen Energy 2016; 41 (46): 21394-21403. doi: 10.1016/j.ijhydene.2016.08.124
  • 14. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V et al. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochimica Acta 2002; 47: 3787-3798. doi: 10.1016/S0013-4686(02)00349-3
  • 15. Papadias DD, Ahluwalia RK, Kariuki N, Myers D, More KL et al. durability of Pt-Co alloy polymer electrolyte fuel cell cathode catalysts under accelerated stress tests. Journal of The Electrochemical Society 2018; 165 (6): F3166-F3177. doi: 10.1149/2.0171806jes
  • 16. Qin C, Wang J, Yang D, Li B, Zhang C. Proton Exchange Membrane Fuel Cell Reversal: A Review. Catalysts 2016; 6 (12):197. doi: 10.3390/ catal6120197
  • 17. J. Li J, A. Alsudairi A, Ma ZF, Mukerjee S, Jia Q. Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: in situ identification of the site-blocking effect. Journal of American Chemistry Society 2017; 139 (4): 1384–1387. doi: 10.1021/jacs.6b11072
  • 18. Eckardt M, Gebauer C, Jusys Z, Wassner M, Hüsing N et al. Oxygen reduction reaction activity and long-term stability of platinum nanoparticles supported on titania and titania-carbon nanotube composites. Journal of Power Sources 2018; 400: 580-591. doi: 10.1016/j. jpowsour.2018.08.036.
  • 19. Ahluwalia RK, Peng JK, Wang X, Cullen DA, Steinbach AJ. Performance of Polymer Electrolyte Fuel Cell Electrodes with Atomically Dispersed (AD) Fe-C-N ORR Catalyst. Journal of The Electrochemical Society 2019; 166 (14): F1096-F1104. doi: 10.1149/2.0851914jes
  • 20. Han B, Carlton CE, Kongkanand A, Ratandeep SK, Theobald BR et al. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy & Environmental Science 2015; 8: 258–266. doi: 10.1039/c4ee02144d
  • 21. Wang X, Vara M, Luo M, Huang H, Ruditskiy A et al. Pd@Pt Core–Shell concave decahedra: a class of catalysts for the oxygen reduction reaction with enhanced activity and durability. Journal American Chemical Society 2015; 137 (47): 15036–15042. doi: 10.1021/jacs.5b10059
  • 22. Rueck M, Garlyyev B, Mayr F, Bandarenka AS, Gagliardi A. Oxygen reduction activities of strained platinum coreshell electrocatalysts predicted by machine learning. The Journal of Physical Chemistry Letters 2020; 11 (5): 1773–1780. doi: 10.1021/acs.jpclett.0c00214
  • 23. Wang L, Zeng Z, Ma C, Liu Y, Giroux M et al. Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts. Nano Letters 2017; 17 (6): 3391–3395. doi: 10.1021/acs.nanolett.7b00046
  • 24. Rostek A, Breisch M, Loza K, Garcia PRAF, Oliveira CLP et al. Wet-chemical synthesis of Pd-Au core-shell nanoparticles (8 nm): From nanostructure to biological properties. ChemistrySelect 2018; 3: 4994-5001. doi: 10.1002/slct.201800638
  • 25. Vorokhtaa M, Khalakhan I, Václavu M, Kovács G, Kozlov SM et al. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells. Applied Surface Science 2016; 365: 245-251. doi: 10.1016/j.apsusc.2016.01.004
  • 26. Yazici MS, Azder MA, Salihoglu O, Boyaci San FG. Ultralow Pt loading on CVD graphene for acid electrolytes and PEM fuel cells. International Journal of the Hydrogen 2018; 43 (40): 18572-18577. doi: 10.1016/j.ijhydene.2018.06.020
  • 27. Fiala R, Vaclavu M, Vorokhta M, Khalakhan I, Lavkova J et al. Proton exchange membrane fuel cell made of magnetron sputtered Pt– CeOx and Pt–Co thin film catalysts. Journal of Power Sources 2015; 273: 105-109. doi: 10.1016/j.jpowsour.2014.08.093.
  • 28. Brummel O, Waidhas F, Khalakhan I, Vorokhta M, Dubau M et al. Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochimica Acta 2017; 251:427-441. doi: 10.1016/j. electacta.2017.08.062
  • 29. Alexeeva OK, Fateev VN. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis. International Journal of Hydrogen Energy 2016; 41 (5): 3373-3386. doi: 10.1016/j.ijhydene.2015.12.147
  • 30. Yu W, Lee Y, Pandiyan A, Ji S, Tanveer WH et al. Enhanced Thermal Stability of Ultrathin Nanostructured Pt cathode by PdO: In Situ Nanodecoration for Low-Temperature Solid Oxide Fuel Cell. ACS Applied Energy Materials 2018, 1 (10): 5163–5168. doi: 10.1021/ acsaem.8b01450
  • 31. Zhang X, Hampshire J, Cook K, Li X, Pletcher D et al. High surface area coatings for hydrogen evolution cathodes prepared by magnetron sputtering. International Journal of Hydrogen Energy 2015; 40 (6): 2452-2459. doi: 10.1016/j.ijhydene.2014.12.107
  • 32. Sievers G W, Bowen J R, Brüser V, Arenz M. Support-free nanostructured PtCu electrocatalyst for the oxygen reduction reaction prepared by alternating magnetron sputtering. Journal of Power Sources 2019; 413: 432-440. doi: 10.1016/j.jpowsour.2018.12.044.
  • 33. Mani P, Srivastava R, Strasser P. Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. The Journal of Physical Chemistry C 2018; 2770-2778. doi: 10.1021/jp0776412
  • 34. Uzunoglu A, Ahsen AS, Dundar F, Ata A, Ozturk O. Structural, electronic, and electrochemical analyses of sputter-coated Pt and Pt–Co/ GCE electrodes with ultra-low metal loadings for PEM fuel cell applications. Journal of Applied Electrochemistry 2017; 47: 139-155 doi: 10.1007/s10800-016-1021-6
  • 35. Galhenage RP, Yan H, Ahsen AS, Ozturk O, Chen DA. Understanding the Growth and Chemical Activity of Co-Pt Bimetallic Clusters on TiO2(110): CO Adsorption and Methanol Reaction. The Journal of Physical Chemistry C 2014; 118 (31): 17773–17786. doi: 10.1021/ jp505003s
  • 36. Tanuma S, Powel CS, Penn DR. Proposed formula for electron inelastic mean free paths based on calculations for 31 materials. Surface Science 1987; 192: L849-L857. doi: 10.1016/S0039-6028(87)81156-1
  • 37. Daubinger P, Kieninger J, Unmüssig T, Urban GA. Electrochemical characteristics of nanostructured platinum electrodes – a cyclic voltammetry study. Physical Chemistry Chemical Physics 2014; 16: 8392-8399. doi: 10.1039/C4CP00342J
  • 38. Kakaei K. High efficiency platinum nanoparticles based on carbon quantum dot and its application for oxygen reduction reaction. International Journal of Hydrogen Energy 2017; 42 (16): 11605-11613.doi: 10.1016/j.ijhydene.2017.01.057.
  • 39. Cetinkaya AY, Ozdemir OK, Koroglu EO, Hasimoglu A, Ozkaya B. The development of catalytic performance by coating Pt–Ni on CMI7000 membrane as a cathode of a microbial fuel cell. Bioresource Technology 2015; 195: 188-193. doi: 10.1016/j.biortech.2015.06.064
  • 40. Jayasankar B, Karan K. O2 electrochemistry on Pt: A unified multi-step model for oxygen reduction and oxide growth. Electrochimica Acta 2015; 273: 367-378. 10.1016/j.electacta.2018.03.191
  • 41. Aran-Ais RM, Dionigi F, Merzdorf T, Gocyla M, Heggen M et al. Elemental Anisotropic Growth and Atomic-Scale Structure of ShapeControlled Octahedral Pt–Ni–Co Alloy Nanocatalysts. Nano Letters 2015; 15 (11): 7473–7480. doi: 10.1021/acs.nanolett.5b03057
  • 42. Zhao Y, Liu J, Wang F, Song Y. Pt–Co secondary solid solution nanocrystals supported on carbon as next-generation catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A (2015); 3: 20086–20091. doi: 20086–20091
  • 43. Tian X, Ma Y, Hu J, Bi M, Gong C, Chu PK, Microstructure and mechanical properties of (AlTi)xN1-x films by magnetic-field-enhanced high power impulse magnetron sputtering. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films 2017; 35 (2): 021402. doi: 10.1116/1.4971202
  • 44. Ait-Djafer A Z , Saoula N, Aknouche H, Guedouar B, Madaoui N. Deposition and characterization of titanium aluminum nitride coatings prepared by RF magnetron sputtering. Applied Surface Science 2015; 350: 6-9. doi: 10.1016/j.apsusc.2015.02.053
  • 45. Mi S, Liu R, Li Y, Ye J, Xie Y et al. Effect of sputter pressure on magnetotransport properties of FePt nanocomposites. Journal of Magnetism and Magnetic Materials 2016; 403: 14-17. doi: 10.1016/j.jmmm.2015.11.084
  • 46. Dannenberg A, Gruner ME, Hucht A, Entel P. Surface energies of stoichiometric FePt and CoPt alloys and their implications for nanoparticle morphologies. Physical Review B 2009; 80: 245438. doi: 10.1103/PhysRevB.80.245438
  • 47. Sakong S, Naderian M, Mathew K, Hennig RG, Groß A. The Journal of Chemical Physics 2015; 142: 234107. doi: 10.1063/1.4922615
  • 48. Li L, Abild-Pedersen F, Greeley J, Nørskov JK. Surface tension effects on the reactivity of metal nanoparticles. The Journal of Physical Chemistry Letters 2015; 6 (19): 3797–3801. doi: 10.1021/acs.jpclett.5b01746
  • 49. Ivanova NA, Alekseeva OK, Fateev VN, Shapir BL, Spasov DD et al. Activity and durability of electrocatalytic layers with low platinum loading prepared by magnetron sputtering onto gas diffusion electrodes. International Journal of the Hydrogen Energy 2019; 44 (56): 29529-29536. doi: 10.1016/j.ijhydene.2019.04.096
  • 50. Chengxu Z, Hu J, Nagatsu M, Shu X, Toyoda H et al. Magnetron sputtering of platinum nanoparticles onto vertically aligned carbon nanofibers for electrocatalytic oxidation of methanol. Electrochimica Acta 2011; 56 (17): 6033-6040. doi: 10.1016/j.electacta.2011.04.091
  • 51. Ozturk O, Ozdemir O K, Ulusoy I, Ahsen A S, Slavcheva E. Effect of Ti sublayer on the ORR catalytic efficiency of dc magnetron sputtered thin Pt films. International Journal of the Hydrogen Energy 2010; 35 (10): 4466-4473. doi: 10.1016/j.ijhydene.2010.02.077
  • 52. Radev I, Topalov G, Lefterova E, Ganske G, Schnakenberg U et al. Optimization of platinum/iridium ratio in thin sputtered films for PEMFC cathodes. International Journal of the Hydrogen Energy 2012; 37 (9): 7730-7735. doi: 10.1016/j.ijhydene.2012.02.015
  • 53. Khalakhan I, Vorokhta M, Václavů M, Šmíd B, Lavková J et al. In-situ electrochemical atomic force microscopy study of aging of magnetron sputtered Pt-Co nanoalloy thin films during accelerated degradation test. Electrochimica Acta 2016; 211: 52-58. doi: 10.1016/j. electacta.2016.06.035
  • 54. Khalakhana I, Supika L, Vorokhtaa M, Yakovleva Y, Dopita M et al. Compositionally tuned magnetron co-sputtered PtxNi100-x alloy as a cathode catalyst for proton exchange membrane fuel cells. Applied Surface Science 2020; 511: 145486. doi: 10.1016/j.apsusc.2020.145486
  • 55. Li W, Lin R, Yang Y. One simple method to mitigate the structure degradation of alloy catalyst layer in PEMFC. Electrochimica Acta 2019; 323: 134823. doi: 10.1016/j.electacta.2019.134823
  • 56. Khalakhan I, Vorokhta M, Kúš Peter, Dopita M, Václavů M et al. In situ probing of magnetron sputtered Pt-Ni alloy fuel cell catalysts during accelerated durability test. Electrochimica Acta 2017; 245: 760-769. doi: 10.1016/j.electacta.2017.05.202
  • 57. YanYan S, Wei Liu C, Huang TH, Zhang Guo Y, Wei Lee S et al. Composition effect of oxygen reduction reaction on PtSn nanorods: An experimental and computational study. International Journal of the Hydrogen Energy 2018; 43 (31): 14427-14438. doi: 10.1016/j. ijhydene.2018.05.176
  • 58. Ivanova NA, Spasov DD, Zasypkina AA, Alekseeva OK, Kukueva EV et al. Comparison of the performance and durability of PEM fuel cells with different Pt-activated microporous layers. International Journal of the Hydrogen Energy 2021; 46: 18093-18106. doi: 10.1016/j. ijhydene.2020.08.234
  • 59. Cui R, Mei L, Han G, Chen J, Zhang G et al. Facile Synthesis of nanoporous Pt-Y alloy with enhanced electrocatalytic activity and durability. Scientific Reports 2017; 41826. doi: 10.1038/srep41826
APA ozturk o, HASIMOGLU A, Ozdemir O, Karaaslan I, Ahsen A (2021). Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. , 1336 - 1352. 10.3906/kim-2101-50
Chicago ozturk osman,HASIMOGLU AYDIN,Ozdemir Oguz Kaan,Karaaslan Inci,Ahsen Ali Şems Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. (2021): 1336 - 1352. 10.3906/kim-2101-50
MLA ozturk osman,HASIMOGLU AYDIN,Ozdemir Oguz Kaan,Karaaslan Inci,Ahsen Ali Şems Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. , 2021, ss.1336 - 1352. 10.3906/kim-2101-50
AMA ozturk o,HASIMOGLU A,Ozdemir O,Karaaslan I,Ahsen A Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. . 2021; 1336 - 1352. 10.3906/kim-2101-50
Vancouver ozturk o,HASIMOGLU A,Ozdemir O,Karaaslan I,Ahsen A Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. . 2021; 1336 - 1352. 10.3906/kim-2101-50
IEEE ozturk o,HASIMOGLU A,Ozdemir O,Karaaslan I,Ahsen A "Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support." , ss.1336 - 1352, 2021. 10.3906/kim-2101-50
ISNAD ozturk, osman vd. "Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support". (2021), 1336-1352. https://doi.org/10.3906/kim-2101-50
APA ozturk o, HASIMOGLU A, Ozdemir O, Karaaslan I, Ahsen A (2021). Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. Turkish Journal of Chemistry, 45(5), 1336 - 1352. 10.3906/kim-2101-50
Chicago ozturk osman,HASIMOGLU AYDIN,Ozdemir Oguz Kaan,Karaaslan Inci,Ahsen Ali Şems Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. Turkish Journal of Chemistry 45, no.5 (2021): 1336 - 1352. 10.3906/kim-2101-50
MLA ozturk osman,HASIMOGLU AYDIN,Ozdemir Oguz Kaan,Karaaslan Inci,Ahsen Ali Şems Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. Turkish Journal of Chemistry, vol.45, no.5, 2021, ss.1336 - 1352. 10.3906/kim-2101-50
AMA ozturk o,HASIMOGLU A,Ozdemir O,Karaaslan I,Ahsen A Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. Turkish Journal of Chemistry. 2021; 45(5): 1336 - 1352. 10.3906/kim-2101-50
Vancouver ozturk o,HASIMOGLU A,Ozdemir O,Karaaslan I,Ahsen A Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support. Turkish Journal of Chemistry. 2021; 45(5): 1336 - 1352. 10.3906/kim-2101-50
IEEE ozturk o,HASIMOGLU A,Ozdemir O,Karaaslan I,Ahsen A "Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support." Turkish Journal of Chemistry, 45, ss.1336 - 1352, 2021. 10.3906/kim-2101-50
ISNAD ozturk, osman vd. "Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support". Turkish Journal of Chemistry 45/5 (2021), 1336-1352. https://doi.org/10.3906/kim-2101-50