Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches

Yıl: 2021 Cilt: 45 Sayı: 5 Sayfa Aralığı: 1375 - 1390 Metin Dili: İngilizce DOI: 10.3906/kim-2102-22 İndeks Tarihi: 30-06-2022

Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches

Öz:
A series of new push–pull chromophores were synthesized in moderate to very high yields (65%–97%) by treating TCNE and TCNQ with alkynes substituted by electron-rich diethylaniline and polycyclic aromatic hydrocarbons. Some of the chromophores exhibit strong intramolecular charge-transfer bands in the near-IR region with $λ_max$ values between 695 and 749 nm. With the help of experimental and theoretical analysis, it is concluded that the trend in $λ_max$ values is affected by PAH substituents sterically, not electronically. Steric constraints led to the increased dihedral angles, reducing conjugation efficiencies. The absorption properties of push-pull compounds have been investigated in solvents possessing different polarities. All chromophores exhibited positive solvatochromism. As an additional proof of efficient charge-transfer in push–pull chromophores, quinoid character (dr) values were predicted using calculated bond lengths. Remarkably, substantial dr values (0.045–0.049) were predicted for donor diethylaniline rings in all compounds. The effects of various polycyclic aromatic hydrocarbons on optical and nonlinear optical properties were also studied by computational methods. Several parameters, such as band gaps, Mulliken electronegativity, chemical hardness and softness, dipole moments, average polarizability, first hyperpolarizability, were predicted for chromophores at the B3LYP/6-31++G(d,p) level of theory. The predicted first hyperpolarizability $β_(tot)$ values vary between $198 to 538 × 10^{–30}$ esu for the reported push–pull chromophores in this study. The highest predicted $β_(tot)$ value in this study is $537.842 × ^{10–{30$ esu, 8150 times larger than the predicted $β_(tot)$ value of benchmark NLO material urea, suggests possible utilization of these chromophores in NLO devices. The charge-transfer character of the synthesized structures was further confirmed by HOMO-LUMO depictions and electrostatic potential maps.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Michinobu T, Diederich F. The [2+2] cycloaddition-retroelectrocyclization (CA-RE) click reaction: facile access to molecular and polymeric push-pull chromophores. Angewandte Chemie International Edition 2018; 57 (14): 3552-3557. doi: 10.1002/anie.201711605
  • 2. Breiten B, Biaggio I, Diederich F. Nonplanar push–pull chromophores for opto-electronic applications. Chimia 2010; 64 (6): 409-413. doi: 10.2533/chimia.2010.409
  • 3. Beels MT, Biaggio I, Reekie T, Chiu M, Diederich F. Two-photon absorption and spectroscopy of the lowest two-photon transition in small donor-acceptor–substituted organic molecules. Physical Review A 2015; 91: 043818. doi: 10.1103/PhysRevA.91.043818
  • 4. Patil Y, Misra R. Rational molecular design towards NIR absorption: efficient diketopyrrolopyrrole derivatives for organic solar cells and photothermal therapy. Journal of Materials Chemistry C 2019; 7; 13020-13031. doi: 10.1039/C9TC03640G
  • 5. Patil Y, Misra R. Diketopyrrolopyrrole-based and tetracyano-bridged small molecules for bulk heterojunction organic solar cells. Chemistry An Asian Journal 2018; 13 (3): 220-229. doi: 10.1002/asia.201701493
  • 6. Walzer K, Maennig B, Pfeiffer M, Leo K. Highly efficient organic devices based on electrically doped transport layers. Chemical Reviews 2007; 107 (4): 1233-1271. doi: 10.1021/cr050156n
  • 7. Berner D, Klein C, Nazeeruddin MK, De Angelis F, Castellani M et al. Efficient blue light-emitting diodes based on a classical “push–pull” architecture molecule 4,4′-di-(2-(2,5-dimethoxyphenyl)ethenyl)-2,2′-bipyridine. Journal of Materials Chemistry 2006; 16: 4468-4474. doi: 10.1039/B610880F
  • 8. Dar AH, Gowri V, Gopal A, Muthukrishnan A, Bajaj A et al. Designing of push–pull chromophores with tunable electronic and luminescent properties using urea as the electron donor. The Journal of Organic Chemistry 2019; 84 (14): 8941-8947. doi: 10.1021/acs.joc.9b00841
  • 9. Li Y, Washino Y, Hyakutake T, Michinobu T. Colorimetric ion sensors based on polystyrenes bearing side chain triazole and donor– acceptor chromophores. Analytical Sciences 2017; 33 (5): 599-604. doi: 10.2116/analsci.33.599
  • 10. Beels MT, Fleischman MS, Biaggio B, Breiten B, Jordan M et al. Compact TCBD based molecules and supramolecular assemblies for thirdorder nonlinear optics. Optical Materials Express 2012; 2 (3): 294-303. doi: 10.1364/OME.2.000294
  • 11. Michinobu T, May JC, Lim JH, Boudon C, Gisselbrecht JP et al. A new class of organic donor–acceptor molecules with large third-order optical nonlinearities. Chemical Communications 2005; (6): 737-739. doi: 10.1039/B417393G
  • 12. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition 2001; 40 (11): 2004-2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  • 13. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition 2002; 41 (14): 2596-2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  • 14. Bruce MI, Rodgers JR, Snow MR, Swincer AG. Cyclopentadienyl-ruthenium and -osmium chemistry. Cleavage of tetracyanoethylene under mild conditions: X-ray crystal structures of [Ru{η3-C(CN)2CPhC C(CN)2}(PPh3)(η-C5H5)] and [Ru{C[ C(CN)2]CPh C(CN)2}-(CNBut)(PPh3)(η-C5H5)]. Journal of the Chemical Society, Chemical Communications 1981; (6): 271-272. doi: 10.1039/ C39810000271
  • 15. Shoji T, Ito S, Toyota K, Yasunami M, Morita N. Synthesis, properties, and redox behavior of mono-, bis-, and tris[1,1,4,4,-tetracyano2-(1-azulenyl)-3-butadienyl] chromophores binding with benzene and thiophene cores. Chemistry A European Journal 2008; 14 (27): 8398-8408. doi: 10.1002/chem.200701981
  • 16. Shoji T, Ito S, Toyota K, Iwamoto T, Yasunami M et al. Reactions between 1-ethynylazulenes and 7,7,8,8-tetracyanoquinodimethane (TCNQ): preparation, properties, and redox behavior of novel azulene-substituted redox-active chromophores European Journal of Organic Chemistry 2009; 2009 (25): 4316-4324. doi: 10.1002/ejoc.200900539
  • 17. Shoji T, Maruyama A, Shimomura E, Nagai D, Ito S et al. Synthesis, properties, and redox behavior of tris(1-azulenyltetracyanobutadiene) and tris[1 azulenylbis(tetracyanobutadiene)] chromophores connected to a 1,3,5-tri(1-azulenyl)benzene core. European Journal of Organic Chemistry 2015; 2015 (9): 1979-1990. doi: 10.1002/ejoc.201403556
  • 18. Kato S-i, Kivala M, Schweizer WB, Boudon C, Gisselbrecht JP et al. Origin of intense intramolecular charge-transfer interactions in nonplanar push–pull chromophores. Chemistry A European Journal 2009; 15 (35): 8687-8691. doi: 10.1002/chem.200901630
  • 19. Michinobu T, Boudon C, Gisselbrecht JP, Seiler P, Frank B et al. Donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDs): new chromophores with efficient intramolecular charge-transfer interactions by atom-economic synthesis. Chemistry A European Journal 2006; 12 (7): 1889-1905. doi: 10.1002/chem.200501113
  • 20. Kivala M, Boudon C, Gissebrecht JP, Seiler P, Gross M et al. Charge-transfer chromophores by cycloaddition–retro-electrocyclization: multivalent systems and cascade reactions. Angewandte Chemie International Edition 2007; 46 (33): 6357-6360. doi: 10.1002/ anie.200701733
  • 21. Dengiz C, Breiten B, Gisselbrecht JP, Boudon C, Trapp N et al. Synthesis and optoelectronic properties of Janus-dendrimer-type multivalent donor–acceptor systems. The Journal of Organic Chemistry 2015; 80 (2): 882-896. doi: 10.1021/jo502367h
  • 22. Mammadova F, Ozsinan S, Okutan M, Dengiz C. Synthesis, characterization, and theoretical investigation of optical and nonlinear optical (NLO) properties of triazene-based push–pull chromophores. Journal of Molecular Structure 2020; 1220: 128726. doi: 10.1016/j. molstruc.2020.128726
  • 23. Shoji T, Higashi J, Ito S, Okujima T, Yasunami M et al. Synthesis of redox-active, intramolecular charge-transfer chromophores by the [2+2] cycloaddition of ethynylated 2H-cyclohepta[b]furan-2-ones with tetracyanoethylene. Chemistry A European Journal 2011; 17 (18): 5116-5129. doi: 10.1002/chem.201003628
  • 24. Betou M, Durand RJ, Sallustrau A, Gousset C, Le Coz E et al. Reactivity of functionalized ynamides with tetracyanoethylene: scope, limitations and optoelectronic properties of the adducts. Chemistry – An Asian Journal 2017; 12 (12): 1338-1346. doi: 10.1002/ asia.201700353
  • 25. Bui AT, Philippe C, Beau M, Richy N, Cordier M et al. Synthesis, characterization and unusual near-infrared luminescence of1,1,4,4-tetracyanobutadiene derivatives. Chemical Communications 2020; 56 (24): 3571-3574. doi: 10.1039/C9CC09560H
  • 26. Kivala M, Boudon C, Gissebrecht JP, Seiler P, Gross M et al. A novel reaction of 7,7,8,8-tetracyanoquinodimethane (TCNQ): chargetransfer chromophores by [2+2] cycloaddition with alkynes. Chemical Communications 2007; 45: 4731-4733. doi: 10.1039/B713683H
  • 27. Finke AD, Diederich F. 6,6-Dicyanopentafulvenes: teaching an old dog new tricks. The Chemical Record 2015; 15 (1): 19-30. doi: 10.1002/ tcr.201402060
  • 28. Hünig S, Herberth E. N,N‘-dicyanoquinone diimines (DCNQIs): versatile acceptors for organic conductors. Chemical Reviews 2004; 104 (11): 5535-5564. doi: 10.1021/cr030637b
  • 29. Donckele EJ, Finke AD, Ruhlmann L, Boudon C, Trapp N et al. The [2+2] cycloaddition–retroelectrocyclization and [4+2] hetero-diels– alder reactions of 2-(dicyanomethylene)indan-1,3-dione with electron-rich alkynes: influence of lewis acids on reactivity. Organic Letters 2015; 17 (14): 3506-3509. doi: 10.1021/acs.orglett.5b01598
  • 30. Jayamurugan G, Gowri V, Hernandez D, Martin S, Gonzalez-Orive A et al. Design and synthesis of aviram–ratner-type dyads and rectification studies in langmuir–blodgett (LB) films. Chemistry A European Journal 2016; 22 (30): 10539-10547. doi: 10.1002/ chem.201505216
  • 31. Wu YL, Stuparu MC, Boudon C, Gisselbrecht JP, Schweizer WB et al. Structural, optical, and electrochemical properties of threedimensional push–pull corannulenes. The Journal of Organic Chemistry 2012; 77 (24): 11014-11026. doi: 10.1021/jo302217n
  • 32. Roncali J, Leriche P, Cravino A. From one- to three-dimensional organic semiconductors: in search of the organic silicon? Advanced Materials 2007; 19 (16): 2045-2060. doi: 10.1002/adma.200700135
  • 33. Lu X, Fan S, Wu J, Jia X, Wang ZS et al. Controlling the charge transfer in D–A–D chromophores based on pyrazine derivatives. The Journal of Organic Chemistry 2014; 79 (14): 6480-6489. doi: 10.1021/jo500856k
  • 34. Zeng Z, Guan Z, Xu QH, Wu J. Octupolar polycyclic aromatic hydrocarbons as new two-photon absorption chromophores: synthesis and application for optical power limiting. Chemistry A European Journal 2011; 17 (14): 3837-3841. doi: 10.1002/chem.201003235
  • 35. Dong L, Saraci F, Yuan K, Wang X, Wang S. Push–pull isomers of indolizino[6,5,4,3-def]phenanthridine decorated with a triarylboron moiety. Organic and Biomolecular Chemistry 2019; 17: 6470-6477. doi: 10.1039/C9OB00923J
  • 36. Pigot C, Noirbent G, Bui TT, Peralta S, Gigmes D et al. Push-pull chromophores based on the naphthalene scaffold: potential candidates for optoelectronic applications. Materials 2019; 12 (8): 1342. doi: 10.3390/ma12081342
  • 37. Uji H, Ogawa J, Itabashi K, Imai T, Kimura S. Compartmentalized host spaces accommodating guest aromatic molecules in a chiral way in a helix-peptide-aromatic framework. Chemical Communications 2018; 54: 12483-12486. doi: 10.1039/C8CC07380E
  • 38. Ikeda A, Omote M, Kusumoto K, Tarui A, Sato K et al. One-pot synthesis of 1,3-enynes with a CF3 group on the terminal sp2 carbon by an oxidative Sonogashira cross-coupling reaction. Organic & Biomolecular Chemistry 2015; 2015 (13): 8886-8892. doi: 10.1039/ C5OB01290B
  • 39. Wu Z, Li A, Fan B, Xue F, Adachi C et al. Phenanthrene-functionalized 3,6-dithiophen-2-yl-2,5- dihydropyrrolo[3,4–c]pyrrole-1,4-diones as donor molecules for solution-processed organic photovoltaic cells. Solar Energy Materials and Solar Cells 2011; 95 (8): 2516-2523. doi: 10.1016/j.solmat.2011.05.006
  • 40. Reutenauer P, Kivala M, Jarowski PD, Boudon C, Gisselbrecht JP et al. New strong organic acceptors by cycloaddition of TCNE and TCNQ to donor-substituted cyanoalkynes. Chemical Communications 2007; 4898-4900. doi: 10.1039/B714731G
  • 41. Bureš F, Schweizer WB, May JC, Boudon C, Gisselbrecht JP et al. Property tuning in charge-transfer chromophores by systematic modulation of the spacer between donor and acceptor. Chemistry A European Journal 2007; 13 (19): 5378-5387. doi: 10.1002/chem.200601735
  • 42. Moonen NNP, Pomerantz WC, Gist R, Boudon C, Gisselbrecht JP et al. Donor-substituted cyanoethynylethenes: π-conjugation and band-gap tuning in strong charge-transfer chromophores. Chemistry A European Journal 2005; 11 (11): 3325-3341. doi: 10.1002/ chem.200500082
  • 43. Jordan M, Kivala M, Boudon C, Gisselbrecht JP, Schweizer WB et al. Switching the regioselectivity in cycloaddition-retro-electrocyclizations between donor-activated alkynes and the electron-accepting olefins TCNE and TCNQ. Chemistry – An Asian Journal 2010; 6 (2): 396- 401. doi: 10.1002/asia.201000539
  • 44. Bureš F, Pytela O, Kivala M, Diederich F. Solvatochromism as an efficient tool to study N,N-dimethylamino- and cyano-substituted π-conjugated molecules with an intramolecular charge-transfer absorption. Journal of Physical Organic Chemistry 2011; 24 (4): 274-281. doi: 10.1002/poc.1744
  • 45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 09, revision D.01. Gaussian Inc, Wallingford 2013.
  • 46. Zouaoui-Rabah M, Sekkal-Rahal M, Djilani-Kobibi F, Elhorri AM, Springborg M. Performance of hybrid DFT compared to MP2 methods in calculating nonlinear optical properties of divinylpyrene derivative molecules. The Journal of Physical Chemistry A 2016; 120 (44): 8843-8852. doi: 10.1021/acs.jpca.6b08040
  • 47. Costa JCS, Taveira RJS, Lima, CFAC, Mendes A, Santos LMNBF. Optical band gaps of organic semiconductor materials. Optical Materials 2016; 2016 (58): 51-60. doi: 10.1016/j.optmat.2016.03.041
  • 48. Jödicke CJ, Lüthi HP. Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donor−acceptor systems. Journal of the American Chemical Society 2003; 125 (1): 252-264. doi: 10.1021/ja020361+
  • 49. Jacquemin D, Bahers TL, Adamo C, Ciofini I. What is the ‘‘best’’ atomic charge model to describe through-space charge-transfer excitations? Physical Chemistry Chemical Physics 2012; 14 (16): 5383-5388. doi: 10.1039/C2CP40261K
  • 50. Karaman CZ, Göker S, Hacioğlu SO, Haciefendioğlu, Yıldırım E et al. Altering electronic and optical properties of novel benzothiadiazole comprising homopolymers via π bridges. Journal of Electrochemical Society 2021; 168: 036514. doi: 10.1149/1945-7111/abedc5
  • 51. Besler BH, Merz Jr KM, Kollmann PA. Atomic charges derived from semiempirical methods. Journal of Computational Chemistry 1990; 11 (4): 431-439. doi: 10.1002/jcc.540110404
  • 52. Liu X, Long P, Sun Z, Yi Z. Optical, electrical and photoelectric properties of layered-perovskite ferroelectric $Bi_2WO_6$ crystals. Journal of Materials Chemistry C 2016; 4 (32): 7563-7570. doi: 10.1039/C6TC02069K
  • 53. Jadhav AG, Rhyman L, Alswaidan IA, Ramasami P, Sekar N. Spectroscopic and DFT approach for structure property relationship of red emitting rhodamine analogues: a study of linear and nonlinear optical properties. Computational and Theoretical Chemistry 2018; 1131: 1-12. doi: 10.1016/j.comptc.2018.03.029
  • 54. Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O et al. Third-order nonlinear optical response of push–pull azobenzene polymers. Chemical Physics Letters 2012; 554: 107-112. doi: 10.1016/j.cplett.2012.10.007
  • 55. Lin T-C, Cole JM, Higginbotham AP, Edwards AJ, Piltz RO et al. Molecular origins of the high-performance nonlinear optical susceptibility in a phenolic polyene chromophore: electron density distributions, hydrogen bonding, and ab initio calculations. The Journal of Physical Chemistry C 2013; 117 (18): 9416-9430. doi: 10.1021/jp400648q
  • 56. Cheng LT, Tam W, Stevenson SH, Meredith GR, Rikken G et al. Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. The Journal of Physical Chemistry 1991; 95 (26): 10631-10643. doi: 10.1021/j100179a026
  • 57. Ma N, Lv M, Liu T, Song M, Liu Y et al. Second-order nonlinear optical properties of [60] fullerene-fused dihydrocarboline derivates: a theoretical study on switch effect. Journal of Materials Chemistry C 2019; 7 (42): 13052-13058. doi: 10.1039/C9TC04126E
  • 58. Cantillo D, Ávalos M, Babiano R, Cintas P, Jiménez JL et al. Push-pull 1,3-thiazolium-5-thiolates. Formation via concerted and stepwise pathways, and theoretical evaluation of NLO properties. Organic and Biomolecular Chemistry 2010; 8 (23): 5367-5374. doi: 10.1039/ C0OB00416B
APA Dengiz C (2021). Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. , 1375 - 1390. 10.3906/kim-2102-22
Chicago Dengiz Cagatay Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. (2021): 1375 - 1390. 10.3906/kim-2102-22
MLA Dengiz Cagatay Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. , 2021, ss.1375 - 1390. 10.3906/kim-2102-22
AMA Dengiz C Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. . 2021; 1375 - 1390. 10.3906/kim-2102-22
Vancouver Dengiz C Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. . 2021; 1375 - 1390. 10.3906/kim-2102-22
IEEE Dengiz C "Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches." , ss.1375 - 1390, 2021. 10.3906/kim-2102-22
ISNAD Dengiz, Cagatay. "Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches". (2021), 1375-1390. https://doi.org/10.3906/kim-2102-22
APA Dengiz C (2021). Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. Turkish Journal of Chemistry, 45(5), 1375 - 1390. 10.3906/kim-2102-22
Chicago Dengiz Cagatay Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. Turkish Journal of Chemistry 45, no.5 (2021): 1375 - 1390. 10.3906/kim-2102-22
MLA Dengiz Cagatay Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. Turkish Journal of Chemistry, vol.45, no.5, 2021, ss.1375 - 1390. 10.3906/kim-2102-22
AMA Dengiz C Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. Turkish Journal of Chemistry. 2021; 45(5): 1375 - 1390. 10.3906/kim-2102-22
Vancouver Dengiz C Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches. Turkish Journal of Chemistry. 2021; 45(5): 1375 - 1390. 10.3906/kim-2102-22
IEEE Dengiz C "Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches." Turkish Journal of Chemistry, 45, ss.1375 - 1390, 2021. 10.3906/kim-2102-22
ISNAD Dengiz, Cagatay. "Polycyclic aromatic hydrocarbon-substituted push–pull chromophores: an investigation of optoelectronic and nonlinear optical properties using experimental and theoretical approaches". Turkish Journal of Chemistry 45/5 (2021), 1375-1390. https://doi.org/10.3906/kim-2102-22