Yıl: 2021 Cilt: 45 Sayı: 6 Sayfa Aralığı: 1895 - 1915 Metin Dili: İngilizce DOI: 10.3906/kim-2105-55 İndeks Tarihi: 01-07-2022

Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy

Öz:
Potassium ferricyanide, potassium ferrocyanide, and their combination system are widely used redox probes for electrochemical impedance spectroscopy (EIS) characterization. In this work, electrochemical behavior of $K_3 Fe(CN)_6 , K_4 Fe(CN)_6 , and K_3 Fe(CN)_6 / K_4 Fe(CN)_6$ redox probes at five different concentrations using a screen printed carbon electrode (SPCE) by cyclic voltammetry (CV) and EIS methods was analyzed. Redox potentials were observed as a result of anodic and cathodic peak with CV analysis with determination 10 mM appropriate concentration through 0.01 mM, 0.1 mM, 1 mM, and 100 mM. In addition, with EIS analysis, each redox probe was simulated according to two different Randles circuit models and fitting equivalent model with varying concentration was determined and examined in detail. The results also demonstrated that selected high and low concentrations of redox probes can be categorized in two different models, although 1 mM behaved as a critical transition concentration. This study may contribute to the determination of relevant redox probe and its concentration in electrochemical investigations by selecting $K_3 Fe(CN)_6 /K_4 Fe(CN)_6$ to decrease any risk of inaccuracy.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kelly PJ, García-Miranda Ferrari A, Foster CW, Brownson DA, Banks CE. Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors (2079-6374) 2018; 8 (2): 53. doi: 10.3390/bios8020053
  • 2. Sanzó G, Taurino I, Antiochia R, Gorton L, Favero G, Mazzei F et al. Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry 2016; 112: 125-31. doi: 10.1016/j.bioelechem.2016.02.012
  • 3. Zeitoun R, Adamchuk V, Warland J, Biswas A. Paper-polished carbon screen-printed electrodes increase reusability and enhance performance in phosphomolybdate electrochemical detection. Journal of Electroanalytical Chemistry 2021; 890: 115229. doi: 10.1016/j. jelechem.2021.115229
  • 4. Freire RS, Duran N, Wang J, Kubota LT. Laccase-based screen printed electrode for amperometric detection of phenolic compounds. Analytical Letters 2002; 35 (1): 29-38. doi: 10.1081/al-120002359
  • 5. Kumar Mistry K, Sagarika Deepthy T, Chaudhuri CR, Saha H. Electrochemical characterization of some commercial screen-printed electrodes in different redox substrates. Current Science 2015; 109 (8): 1427-1436. doi: 10.18520/v109/i8/1427-1436
  • 6. Charoenkitamorn K, Chailapakul O, Siangproh W. Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta 2015; 132: 416-23. doi: 10.1016/j.talanta.2014.09.020
  • 7. Wang J, Xu Z, Zhang M, Liu J, Zou H et al. Improvement of electrochemical performance of screen-printed carbon electrodes by UV/ ozone modification. Talanta 2019; 192: 40-5. doi: 10.1016/j.talanta.2018.08.065
  • 8. Athey D, Ball M, McNeil CJ, Armstrong RD. A study of enzyme-catalyzed product deposition on planar gold electrodes using electrical impedance measurement. Electroanalysis 1995; 7 (3): 270-273. doi: 10.1002/elan.1140070313
  • 9. Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2007; 19 (12): 1239-1257. doi: 10.1002/elan.200603855
  • 10. Randviir EP, Banks CE. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Analytical Methods 2013; 5 (5): 1098-1115. doi: 10.1039/c3ay26476a
  • 11. Pajkossy T, Mészáros G. Connection of CVs and impedance spectra of reversible redox systems, as used for the validation of a dynamic electrochemical impedance spectrum measurement system. Journal of Solid State Electrochemistry 2020; 24: 2883-2889. doi: 10.1007/ s10008-020-04661-8
  • 12. Koç Y, Moralı U, Erol S, Avci H. Electrochemical investigation of gold based screen printed electrodes: an application for a seafood toxin detection. Electroanalysis 2021; 33 (4): 1033-1048. doi: 10.1002/elan.202060433
  • 13. Yasun E, Gulbakan B, Ocsoy I, Yuan Q, Shukoor MI et al. Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods. Analytical Chemistry 2012; 84 (14): 6008-6015. doi: 10.1021/ac300806s
  • 14. Zaib M, Athar MM. Electrochemical evaluation of phanerocheaete chrysosporium based carbon paste electrode with potassium ferricyanide redox system. International Journal of Electrochemical Science 2015; 10 (8): 6690-6702.
  • 15. Andrieux C, Blocman C, Dumas-Bouchiat J, M’halla F, Saveant J. Homogeneous redox catalysis of electrochemical reactions: part V. cyclic voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1980; 113 (1): 19-40. doi: 10.1016/ S0022- 0728(80)80508-0
  • 16. Pandurangachar M, Swamy BK, Chandrashekar B, Gilbert O, Reddy S et al. Electrochemical investigations of potassium ferricyanide and dopamine by 1-butyl-4-methylpyridinium tetrafluoro borate modified carbon paste electrode: A cyclic voltammetric study. International Journal of Electrochemical Science 2010; 5 (8): 1187-1202.
  • 17. Niranjana E, Swamy BK, Naik RR, Sherigara B, Jayadevappa H. Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode: a cyclic voltammetric study. Journal of Electroanalytical Chemistry 2009; 631 (1-2): 1-9. doi: 10.1016/j.jelechem.2009.02.011
  • 18. Willans MJ, Wasylishen RE, McDonald R. Polymorphism of potassium ferrocyanide trihydrate as studied by solid-state multinuclear NMR spectroscopy and X-ray diffraction. Inorganic chemistry 2009; 48 (10): 4342-4353. doi: 10.1021/ic802134j
  • 19. Figgis B, Gerloch M, Mason R, Nyholm RS. The crystallography and paramagnetic anisotropy of potassium ferricyanide. Proceedings of the Royal Society of London A Mathematical and Physical Sciences 1969; 309 (1496): 91-118. doi: 10.1098/rspa.1969.0031
  • 20. Jafri SF, Koumousi ES, Sainctavit P, Juhin, A. Large orbital magnetic moment measured in the $[TpFeIII(CN)_3]−$ precursor of photomagnetic molecular prussian blue analogues. Inorganic Chemistry 2016; 55 (14): 6980-6987. doi: 10.1021/acs.inorgchem.6b00664
  • 21. Hocking RK, Wasinger EC, de Groot FM, Hodgson KO, Hedman B et al. Fe L-edge XAS studies of K4[Fe(CN)6] and K3[Fe(CN)6]: a direct probe of back-bonding. Journal of the American Chemical Society 2006; 128 (32): 10442-10451. doi: 10.1021/ja061802i
  • 22. Chen P, McCreery RL. Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Analytical Chemistry 1996; 68 (22): 3958-3965. doi: 10.1021/ac960492r
  • 23. Taurino I, Carrara S, Giorcelli M, Tagliaferro A, De Micheli G. Comparison of two different carbon nanotube-based surfaces with respect to potassium ferricyanide electrochemistry. Surface Science 2012; 606 (3-4): 156-160. doi: 10.1016/j.susc.2011.09.001
  • 24. Oberhaus FV, Frense D, Beckmann D. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review. Biosensors 2020; 10 (5): 45. doi: 10.3390/bios10050045
  • 25. Oosterhuis W, Lang G. Mössbauer effect in $K_3Fe(CN)_6$. Physical Review 1969; 178 (2): 439-456. doi: 10.1103/physrev.178.439
  • 26. Parsons R, Drickamer H. Effect of pressure on the spectra of certain transition metal complexes. The Journal of Chemical Physics 1958; 29 (4): 930-937. doi: 10.1063/1.1744614
  • 27. Naiman C. Interpretation of the absorption spectra of K3Fe(CN)6. The Journal of Chemical Physics 1961; 35 (1): 323-328. doi: 10.1063/1.1731909
  • 28. Ribeiro JA, Silva E, Moreira PS, Pereira CM. Electrochemical characterization of redox probes at gold screen-printed electrodes: efforts towards signal stability. Chemistry Select 2020; 5 (17): 5041-5048. doi: 10.1002/slct.202001411
  • 29. Lazar J, Schnelting C, Slavcheva E, Schnakenberg U. Hampering of the stability of gold electrodes by ferri-/ferrocyanide redox couple electrolytes during electrochemical impedance spectroscopy. Analytical Chemistry 2016; 88 (1): 682-687. doi: 10.1021/acs. analchem.5b02367
  • 30. Samin AJ. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects. AIP Advances 2016; 6 (5): 055101. doi: 10.1063/1.4948698
  • 31. Orazem ME, Tribollet B. Electrochemical impedance spectroscopy. New Jersey 2008: 383-389.
  • 32. Tolouei NE, Ghamari S, Shavezipur M. Development of circuit models for electrochemical impedance spectroscopy (EIS) responses of interdigitated MEMS biochemical sensors. Journal of Electroanalytical Chemistry 2020; 878: 114598. doi: 10.1016/j.jelechem.2020.114598
  • 33. Brug G, van den Eeden AL, Sluyters-Rehbach M, Sluyters JH. The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984; 176 (1-2): 275-295. doi: 10.1016/ s0022-0728(84)80324-1
APA Koç Y, moralı u, Erol S, Avci H (2021). Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. , 1895 - 1915. 10.3906/kim-2105-55
Chicago Koç Yücel,moralı ugur,Erol Salim,Avci Huseyin Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. (2021): 1895 - 1915. 10.3906/kim-2105-55
MLA Koç Yücel,moralı ugur,Erol Salim,Avci Huseyin Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. , 2021, ss.1895 - 1915. 10.3906/kim-2105-55
AMA Koç Y,moralı u,Erol S,Avci H Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. . 2021; 1895 - 1915. 10.3906/kim-2105-55
Vancouver Koç Y,moralı u,Erol S,Avci H Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. . 2021; 1895 - 1915. 10.3906/kim-2105-55
IEEE Koç Y,moralı u,Erol S,Avci H "Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy." , ss.1895 - 1915, 2021. 10.3906/kim-2105-55
ISNAD Koç, Yücel vd. "Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy". (2021), 1895-1915. https://doi.org/10.3906/kim-2105-55
APA Koç Y, moralı u, Erol S, Avci H (2021). Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry, 45(6), 1895 - 1915. 10.3906/kim-2105-55
Chicago Koç Yücel,moralı ugur,Erol Salim,Avci Huseyin Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry 45, no.6 (2021): 1895 - 1915. 10.3906/kim-2105-55
MLA Koç Yücel,moralı ugur,Erol Salim,Avci Huseyin Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry, vol.45, no.6, 2021, ss.1895 - 1915. 10.3906/kim-2105-55
AMA Koç Y,moralı u,Erol S,Avci H Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry. 2021; 45(6): 1895 - 1915. 10.3906/kim-2105-55
Vancouver Koç Y,moralı u,Erol S,Avci H Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry. 2021; 45(6): 1895 - 1915. 10.3906/kim-2105-55
IEEE Koç Y,moralı u,Erol S,Avci H "Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy." Turkish Journal of Chemistry, 45, ss.1895 - 1915, 2021. 10.3906/kim-2105-55
ISNAD Koç, Yücel vd. "Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy". Turkish Journal of Chemistry 45/6 (2021), 1895-1915. https://doi.org/10.3906/kim-2105-55