Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution

Yıl: 2021 Cilt: 45 Sayı: 6 Sayfa Aralığı: 1988 - 1996 Metin Dili: İngilizce DOI: 10.3906/kim-2106-67 İndeks Tarihi: 01-07-2022

Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution

Öz:
In this work, new tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts, 2-ethyl-1-(p-X-phenyl)-3,5- dimethylpyrazolium tetrafluoroborate $[X: -Br (4a), -OCH_3 (4b), -NO_2 (4c)]$ and 2-butyl-1-(p-X-phenyl)-3,5-dimethylpyrazolium tetrafluoroborate $[X: -Br (5a), -OCH_3 (5b), -NO_2 (5c)]$, were synthesized by following halide-free synthetic route. Their chemical structures were identified through NMR $(^{1} H, ^{13}C, ^{19}F)$, IR, elemental analysis, and HRMS data. The synthesized 4a-4c and 5a-5c salts were used for the removal studies of methyl orange dye from aqueous solutions. The effects of specific parameters such as nature of the solvent, pH, contact time, amount and structure of the salts, and concentration of potassium chloride on the removal efficiencies were investigated. Experimental results revealed that methyl orange could be removed from the aqueous solution up to 99.7% under the optimized conditions. The composition of the ion pairs between the cation of the 4b and anion of methyl orange was determined. The reuse of the 4b was achieved up to five cycles, with high extraction efficiencies of over 90 %. Accordingly, a time-efficient, simple, and highly effective method has been presented to remove methyl orange dye from aqueous solutions.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Sing SK, Savoy AW. Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids 2020; 297: 112038. doi: 10.1016/j. molliq.2019.112038
  • 2. Abu-Lebdeh Y, Abouimrane A, Alarco P, Armand, M. Ionic liquid and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries. Journal of Power Sources. 2006; 154 (1): 255-261. doi: 10.1016/j.jpowsour.2005.03.231
  • 3. Chiappe C, Sanzone A, Mendola D, Castiglione F, Famulari A et al. Pyrazolium- versus imidazolium-based ionic liquids: structure, dynamics and physicochemical properties. The Journal of Physical Chemistry B 2013; 117 (2): 668-676. doi: 10.1021/jp3107793
  • 4. Chai M, Jin Y, Fang S, Yang L, Hirano S et al. Ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. Electrochimica Acta 2012; 66: 67-74. doi: 10.1016/j.electacta.2012.01.059
  • 5. Özdemir MC, Özgün B. Phenyl/alkyl-substituted-3,5-dimethylpyrazolium ionic liquids. Journal of Molecular Liquids 2014; 200: 129-135. doi: 10.1016/j.molliq.2014.10.014
  • 6. Zheng D, Wang T, Zhu X, Chen C, Ren T et al. Protic pyrazolium ionic liquids for efficient chemical fixation of $CO_2$ : design, synthesis, and catalysis. Molecular System Design & Engineering 2018; 3: 348-356. doi: 10.1039/C7ME00068E
  • 7. Vasilyev D, Shirzadi E, Rudnev AV, Broekmann P, Dyson PJ. Pyrazolium ionic liquid co-catalysts for the electroreduction of $CO_2. ACS$ Applied Energy Materials 2018; 1 (10): 5124-5128. doi: 10.1021/acsaem.8b01086
  • 8. Soleimani O. Properties and applications of ionic liquids. Journal of Chemical Reviews 2020; 2 (3): 169-181. doi: 10.22034/JCR.2020.106909
  • 9. Holbrey JD, Reichert WM, Swatloski RP, Broker GA, Pitner WR et al. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl- sulfate anions. Green Chemistry 2002; 4: 407-413. doi: 10.1039/B204469B
  • 10. Özdemir MC, Özgün B. Tunable aryl alkyl ionic liquids (TAAILs) based on 1-aryl-3,5-dimethyl-1H-pyrazoles. Journal of Molecular Liquids 2017; 248: 314-321. doi: 10.1016/j.molliq.2017.10.033
  • 11. Szpecht A, Zajac A, Zielinski D, Maciejewski H, Smiglak M. Versatile method for the simultaneous synthesis of two ionic liquids, otherwise difficult to obtain, with high atom economy. ChemistryOpen 2019; 8 (7): 972-983. doi: 10.1002/open.201900217
  • 13. Maton C, Van Hecke K, Stevens CV. Peralkylated imidazolium carbonate ionic liquids: synthesis using dimethyl carbonate, reactivity and structure. New Journal of Chemistry 2015; 39: 461-468. doi: 10.1039/c4nj01301h
  • 14. Chand D, Wilk-Kozubek M, Smetana V, Mudring AV. Alternative to the popular imidazolium ionic liquids: 1,2,4- Triazolium ionic liquids with enhanced thermal and chemical stability. ACS Sustainable Chemistry & Engineering 2019; 7 (19): 15995-16006. doi: 10.1021/ acssuschemeng.9b02437
  • 15. Hallett JP, Welton T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chemical Reviews 2011; 111 (5): 3508-3576. doi: 10.1021/cr1003248
  • 16. Ghandi K. A review of ionic liquids, their limits and applications. Green and Sustainable Chemistry 2014; 4: 44-53. doi: 10.4236/ gsc.2014.41008
  • 17. Han X, Armstrong DW. Ionic liquids in separations. Accounts of Chemical Research 2007; 40 (11): 1079-1086. doi: 10.1021/ar700044y
  • 18. Kermanioryani M, Mutalib MIA, Gonfa G, El-Harbawi M, Mazlan FA et al. Using tunability of ionic liquids to remove methylene blue from aqueous solution. Journal of Environmental Chemical Engineering 2016; 4 (2): 2327-2332. doi: 10.1016/j.jece.2016.04.008
  • 19. Muthuraman G, Palanivelu K. Selective extraction and separation of textile dyes from aqueous solution by tetrabutyl ammonium bromide. Dyes and Pigments 2005; 64 (3): 251-257. doi: 10.1016/j.dyepig.2004.05.014
  • 20. Bouchal R, Prelot B, Hesemann P. Alkylguanidium based ionic liquids in a screening study for removal of anionic pollutants from aqueous solution. RSC Advances 2016; 6: 39125-39130. doi: 10.1039/C6RA03607D
  • 21. Ahrens S, Peritz A, Strassner T. Tunable aryl alkyl ionic liquids (TAAILs): the next generation of ionic liquids. Angewandte Chemie International Editition 2009; 48 (42): 7908-7910. doi: 10.1002/anie.200903399
  • 22. Meyer D, Strassner T. 1,2,4-Triazole-based tunable aryl/alkyl ionic liquids. The Journal of Organic Chemistry 2011; 76 (1): 305-308. doi: 10.1021/jo101784v
  • 23. Schulz T, Ahrens S, Meyer D, Allolio C, Peritz A et al. Electronic effects of para-substitution on the melting points of TAAILs. Chemistry An Asian Journal 2011; 6 (3): 863-867. doi: 10.1002/asia.201000744
  • 24. Özdemir MC, Aktan E, Şahin O. The association of like-charged ions in tunable protic pyrazolium salts. Journal of Molecular Structure 2021; 1242: 130684. doi: 10.1016/j.molstruc.2021.130684
  • 25. Özdemir MC, Özgün B, Aktan E. 1-Aryl-3,5-dimethylpyrazolium based tunable protic ionic liquids (TPILs). Journal of Molecular Structure 2019; 1180: 564-572. doi: 10.1016/j.molstruc.2018.12.027
  • 26. Forgacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters: A review. Environment International 2004; 30 (7): 953-971. doi: 10.1016/j.envint.2004.02.001
  • 27. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology 2001; 77 (3): 247-255. doi: 10.1016/S0960-8524(00)00080-8
  • 28. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management 2016; 182: 351-366. doi: 10.1016/j.jenvman.2016.07.090
  • 29. Sharma S, Kaur A. Various methods for removal of dyes from industrial effluents - A review. Indian Journal of Science and Technology 2018; 11 (12): 1-21. doi: 10.17485/ijst/2018/v11i12/120847
  • 30. Özdemir MC. Removal of methylene blue by new tunable aryl/alkyl ionic liquids/salts (TAAILs) from aqueous solution. Separation Science and Technology 2020; 55 (18): 3299-3306. doi: 10.1080/01496395.2019.1677714
  • 31. Liu Q, Zheng Z, Yang X, Luo X, Zhang J et al. Effect of factors on decolorization of azo dye methyl orange by oxone/natural sunlight in aqueous solution. Environmental Science and Pollution Research 2012; 19: 577-584. doi: 10.1007/s11356-011-0591-4
  • 32. Dai Y, Row KH. Magnetic chitosan functionalized with β-cyclodextrin as ultrasound-assisted extraction adsorbents for the removal of methyl orange in wastewater coupled with high-performance liquid chromatography. Journal of Separation Science 2018; 41 (17): 3397- 3403. doi: 10.1002/jssc.201800177
  • 33. Safavi-Mirmahalleh SA, Salami-Kalajahi M, Roghani-Mamaqani H. Adsorption kinetics of methyl orange from water by pH-sensitive poly(2-(dimethylamino)ethyl methacrylate)/nanocrystalline cellulose hydrogels. Environmental Science and Pollution Research 2020; 27: 28091-28103. doi: 10.1007/s11356-020-09127-y
  • 34. Farag HK, Aboelenin RMM, Fathy NA. Photodegradation of methyl orange dye by ZnO loaded onto carbon xerogels composites. AsiaPacific Journal of Chemical Engineering 2017; 12 (1): 4-12. doi: 10.1002/apj.2048
  • 35. Pei YC, Wang JJ, Xuan XP, Fan J, Fan M. Factors affecting ionic liquids based removal of anionic dyes from water. Environmental Science & Technology 2007; 41 (14): 5090-5095. doi: 10.1021/es062838d
  • 36. Kolodziejczyk AM, Manning M. A convenient method for O-alkylation of N-substituted tyrosines using a crown ether. The Journal of Organic Chemistry 1981; 46 (9): 1944-1946. doi: 10.1021/jo00322a049
  • 37. Deetlefs M, Seddon KR. Improved preparations of ionic liquids using microwave irradiation. Green Chemistry 2003; 5: 181-186. doi: 10.1039/b300071k
  • 38. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Hoboken, NJ, USA: Wiley 1986. doi: 10.1002/9780470405840
  • 39. Ito S, Yamamoto D. Structure of the methyl orange-binding site on human serum albümin and its color-change mechanism. Biomedical Research (Tokyo) 2015; 36 (4): 247-252. doi: 10.2220/biomedres.36.247
  • 40. Araujo RE, Gomes ASL, Araujo CB. Measurement of pKa of organic molecules using third-order nonlinear optics. Chemical Physics Letters 2000; 330(3-4): 347-353. doi: 10.1016/S0009-2614(00)01108-8
  • 41. Pires MJRGR, Ferra IA, Marques AMM. Ionization of methyl orange in aqueous sodium chloride solution. The Journal of Chemical Thermodynamics 2012; 53: 93-99. doi: 10.1016/j.jct.2012.04.023
  • 42. Pandit P, Basu S. Removal of organic dyes from water by liquid-liquid extraction using reverse micelles. Journal of Colloid Interface Science 2002; 245 (1): 208-214. doi: 10.1006/jcis.2001.7939
  • 43. Fan Y, Dong X, Li Y, Zhong Y, Miao J et al. Removal of rhodamine b from water by benzyl-functionalized ionic liquids. Clean Soil Air Water 2016; 44 (9): 1106-1112. doi: 10.1002/clen.201500363
  • 44. Florea M, Ilie M. Ion-pair spectrophotometry in pharmaceutical and biomedical analysis: challenges and perspectives. In: Sharmin E, Zafar F (editors). Spectroscopic analyses - developments and applications. London, UK: Intechopen, 2017, pp. 173-191. doi: 10.5772/ intechopen.69778
  • 45. Ishchenko AA, Shapovalov SA. Heterogeneous association of the ions of dyes in solutions (review). Journal of Applied Spectroscopy 2004; 71: 605-629. doi: 10.1023/B:JAPS.0000049618.42857.0a
  • 46. Irving H, Pierce TB. Observations on Job’s method of continuous variations and its extension to two-phase systems. Journal of the Chemical Society 1959; 2565-2574. doi: 10.1039/JR9590002565
APA Canbulat Özdemir M (2021). Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. , 1988 - 1996. 10.3906/kim-2106-67
Chicago Canbulat Özdemir Melek Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. (2021): 1988 - 1996. 10.3906/kim-2106-67
MLA Canbulat Özdemir Melek Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. , 2021, ss.1988 - 1996. 10.3906/kim-2106-67
AMA Canbulat Özdemir M Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. . 2021; 1988 - 1996. 10.3906/kim-2106-67
Vancouver Canbulat Özdemir M Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. . 2021; 1988 - 1996. 10.3906/kim-2106-67
IEEE Canbulat Özdemir M "Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution." , ss.1988 - 1996, 2021. 10.3906/kim-2106-67
ISNAD Canbulat Özdemir, Melek. "Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution". (2021), 1988-1996. https://doi.org/10.3906/kim-2106-67
APA Canbulat Özdemir M (2021). Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. Turkish Journal of Chemistry, 45(6), 1988 - 1996. 10.3906/kim-2106-67
Chicago Canbulat Özdemir Melek Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. Turkish Journal of Chemistry 45, no.6 (2021): 1988 - 1996. 10.3906/kim-2106-67
MLA Canbulat Özdemir Melek Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. Turkish Journal of Chemistry, vol.45, no.6, 2021, ss.1988 - 1996. 10.3906/kim-2106-67
AMA Canbulat Özdemir M Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. Turkish Journal of Chemistry. 2021; 45(6): 1988 - 1996. 10.3906/kim-2106-67
Vancouver Canbulat Özdemir M Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution. Turkish Journal of Chemistry. 2021; 45(6): 1988 - 1996. 10.3906/kim-2106-67
IEEE Canbulat Özdemir M "Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution." Turkish Journal of Chemistry, 45, ss.1988 - 1996, 2021. 10.3906/kim-2106-67
ISNAD Canbulat Özdemir, Melek. "Tunable aryl alkyl pyrazolium tetrafluoroborate ionic liquids/salts: synthesis, characterization, and applications for removal of methyl orange from aqueous solution". Turkish Journal of Chemistry 45/6 (2021), 1988-1996. https://doi.org/10.3906/kim-2106-67