Yıl: 2021 Cilt: 45 Sayı: 6 Sayfa Aralığı: 1997 - 2006 Metin Dili: İngilizce DOI: 10.3906/kim-2106-53 İndeks Tarihi: 01-07-2022

Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method

Öz:
Wound dressings are one of the most rapidly expanding areas in medical textiles. In recent years, a large number of functional wound dressing has been developed. The aims of these products are to speed up the wound healing process and to provide maximum comfort for patients. Today, the multidisciplinary studies are required to improve further existed wound dressings. The results of such research studies are also promised new hopes for the Turkish textile industry weakened by the global competition. For this purpose, three different polymers were selected as silk fibroin (SF) / polycaprolactone (PCL) / polyethylene oxide (PEO). The productions were made using triple and doublex mixture polymers and single polymer. It has been observed that the SF/PCL/PEO solution has extremely good viscosity, and conductivity values, fiber diameter, and structure thickness have the highest values. SF/PCL/PEO structure has a middle level in the strength value. It has been observed that the PCL polymer plays an effective role in the strength value. The most effective result for S group mats was seen in S2 (PCL/PEO) mat with a 2.62% reduction against the HaCaT cell line. A nanofiber tissue scaffold was produced by the electrospinning method, and a structured candidate for use was obtained by improving performance.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ziabicki A. Fundamentals of fibre formation: the science of fiber spinning and drawing. New York: Wiley-Interscience, 1976.
  • 2. Erdem R, Usta I, Akalin M, Atak O, Yuksek M et al. The impact of solvent type and mixing ratios of solvents on the properties of polyurethane based electrospun nanofibers. Applied Surface Science 2015; 334: 227-230. doi: 10.1016/j.apsusc.2014.10.123
  • 3. Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Current Opinion Colloid & Interface Science 2003; 8 (1): 64–75. doi: https://doi.org/10.1016/S1359-0294(03)00004-9
  • 4. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Advanced Materials 2004; 16: (14): 1151–1170. doi: 10.1002/adma.200400719
  • 5. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M et al. Nanostructured fibers via electrospinning. Advanced Materials 2001; 13: 70–72. doi: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
  • 6. Yang L, Fitie CFC, Werf K, Bennink ML, Dijkstra PJ et al. Mechanical properties of single electrospun collagen type I fibers. Biomaterials 2008; 29: 955–962. doi: 10.1016/j.biomaterials.2007.10.058
  • 7. Schreuder-Gibson H, Gibson P, Senecal K, Sennett M, Walker J et al. Protective textile materials based on electrospun nanofibers. Journal of Advanced Materials. Advanced Materials 2002; 34: 44-55.
  • 8. Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A Physicochemical and Engineering Aspects 2001; 187-188 (5): 469-481. doi: 10.1016/S0927-7757(01)00616-1
  • 9. Drew C, Wang XY, Samuelson LA, Kumar JJ. The effect of viscosity and filler on electrospun fiber morphology. Journal of Macromolecular Science-Pure Applied Chemistry 2003; A40 (12): 1415-1422. doi: 10.1081/MA-120025320
  • 10. Dai HQ, Gong J, Kim H, Lee D. A novel method for preparing ultra-fine alumina–borate oxide fibres via an electrospinning technique. Nanotechnology 2002; 13 (5): 674-677. doi: 10.1088/0957-4484/13/5/327
  • 11. Casper CL, Yang W, Farach-Carson MC, Rabolt JF. Coating electrospun collagen and gelatin fibers with perlecan domain i for increased growth factor binding. Biomacromolecules 2007; 8 (4): 1116-1123. doi: 10.1021/bm061003s
  • 12. Sahoo S, Ang LT, Goh JC, Toh SL. Growth factor delivery through electrospunnanofibers in scaffolds for tissue engineering applications. Journal of Biomedical Materials Research Part A 2010; 93: 1539–1550. doi: 10.1002/jbm.a.32645
  • 13. Zhang YZ, Venugopal JR, El-Turki A, Ramakrishna S, Su B et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 2008; 29: 4314–4322. doi: 10.1016/j.biomaterials.2008.07.038
  • 14. Yin A, Zhang K, McClure MJ, Huang C, Wu J et al. Electrospinning collagen/chitosan/poly(L-lactic acid-co-e-caprolactone) to form a vascular graft: Mechanical and biological characterization. Journal of Biomedical Material Research Part A 2013; 101A: 1292–1301. doi: 10.1002/jbm.a.34434
  • 15. Li WJ, Laurencin, CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research 2002; 60 (4): 613-621. doi: 10.1002/jbm.10167
  • 16. Humenik M, Lang G, Schibel T. Silk nanofibril self-assembly versus electrospinning. WIREs Nanomedicine and Nanobiotechnology 2018; 10: (4). doi: 10.1002/wnan.1509
  • 17. Lin S, Chen M, Jiang H, Fan L, Sun B et al. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect, Colloids and Surfaces B: Biointerfaces 2016; 139: 156-163. doi: 10.1016/j.colsurfb.2015.12.001
  • 18. Saltık D. Fibroin nanofibers production by electrospinning method. MSc, Marmara University, Istanbul, Turkey, 2017.
  • 19. Rabionet M, Yeste M, Puig T, Curiana J. Electrospinning PCL scaffolds manufacture for three-dimensional breast cancer cell culture. Polymers 2017; 9 (8): 328. doi: 10.3390/polym9080328
  • 20. Kalwar K, Sun WX, Li D, Zhang X, Shan D. Coaxial electrospinning of polycaprolactone-chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity. Reactive and Functional Polymers 2016; 107: 87–92. doi: 10.1016/j.reactfunctpolym.2016.08.010
  • 21. Doğan Z. Development and characterization of nanofiber wound dressing. MSc, Istanbul Technical University, Istanbul, Turkey, 2012.
  • 22. Yin Y, Pu D, Xiong J. Analysis of the comprehensive tensile relationship in electrospun Silk Fibroin/polycaprolactone nanofiber membranes. Membranes 2017; 7 (4): 67. doi: 10.3390/membranes7040067
  • 23. Luo J, Zhang H, Zhu J, Cui X, Gao J et al. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids and Surfaces B: Biointerfaces 2018; 163: 369-378. doi: 10.1016/j.colsurfb.2017.12.043
  • 24. Adıyaman C. Synthesis and characterization of Peo-Li and Peo-Pani gel electrodes. MSc, Hitit University, Corum, Turkey, 2013.
  • 25. Koç M. Chemical affinity profiles and miscibilities of Polyethylene Oxide (PEO) and Polyvinylpyrrolidone (PVP). MSc, Hacettepe University, Ankara, Turkey, 2016.
  • 26. Ju HW, Lee OJ, Lee JM, Moon BM, Park HJ et al. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. International Journal of Biological Macromolecules 2016; 85: 29-39. doi: 10.1016/j.ijbiomac.2015.12.055
  • 27. Yuan H, Shi H, Qiu X, Chen Y. Mechanical property, and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers. Journal of Biomaterials Science, Polymer Edition 2016; 27 (3): 263-275. doi: 10.1080/09205063.2015.1120475
  • 28. Rubert M, Dehli J, Li YF, Taskin MB, Xu R et al. Electrospun PCL/PEO coaxial fibers for basic fibroblast growth factor delivery. Journal of Materials Chemistry B 2014; 2: 8538-8546. doi:10.1039/C4TB01258E
  • 29. ISO Test Methods (2009). ISO 10993-5:2009 Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity.
  • 30. Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry 2018. doi: 10.1016/j.arabjc.2015.11.015
  • 31. Bulbul YE, Eskitoros-Togay ŞM, DemirtasKorkmaz F, Dilsiz N. Multi-walled carbon nanotube-incorporating electrospun composite fibrous mats for controlled drug release profile. International Journal of Pharmaceutics 2019; 568: 118513. doi: 10.1016/j.ijpharm. 2019.118513
  • 32. Zargham S, Bazgir S, Tavakoli A, Rashidi AS, Damerchely R. The effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. Journal of Engineered Fibers and Fabrics 2018; 7 (4): 42-49. doi: 10.1177/155892501200700414
  • 33. Bulbul YE, Okur M, Demirtas-Korkmaz F, Dilsiz N. Development of PCL/PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system. Applied Clay Science 2020; 186: 105430. doi: 10.1016/j.clay.2019.105430
  • 34. Zhang H, Li LL, Dai FY, Zhang HN, Ni B et al. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. Journal of Translational Medicine 2012; 10: 117. doi: 10.1186/1479-5876-10-117
  • 35. Elzein T, Nassar-Eddine M, Delaite C, Bistac S, Dumas P. FTIR study of polycaprolactone chane organization at interfaces. Journal of Colloid and Interface Science 2004; 273 (2): 381-387. doi: 10.1016/j.jcis.2004.02.001
  • 36. Gao X, Gou J, Zhang L, Duan S, Li C. A silk fibroin based green nano-filter for air filtration. Royal Society of Chemistry Advances 2018; 8: 8181-8189. doi: 10.1039/C7RA12879G
  • 37. Ling S, Qi Z, Watts B, Shao Z, Chen X. Structural determination of protein-based polymer blends with a promising tool: combination of FTIR and STXM spectroscopic imaging. Physical Chemistry Chemical Physics 2014; 16: 7741-7748. doi: 10.1039/C4CP00556B
  • 38. Kim BS, Park KE, Kim MH, You HK, Lee J et al. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds. International Journal of Nanomedicine 2015; 10. doi: 10.2147/IJN.S72730
  • 39. Lin S, Chen M, Jiang H, Fan L, Sun B et al. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect. Colloids and Surfaces B: Biointerfaces 2016; 139: 156-163. doi: 10.1016/j.colsurfb.2015.12.001
APA YÜKSEK M, AKALIN M, SANCAK E, İşgören e, atak o, SALTIK D, Beyit A (2021). Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. , 1997 - 2006. 10.3906/kim-2106-53
Chicago YÜKSEK METIN,AKALIN MEHMET,SANCAK Erhan,İşgören erkan,atak onur,SALTIK DERYA,Beyit Ali Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. (2021): 1997 - 2006. 10.3906/kim-2106-53
MLA YÜKSEK METIN,AKALIN MEHMET,SANCAK Erhan,İşgören erkan,atak onur,SALTIK DERYA,Beyit Ali Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. , 2021, ss.1997 - 2006. 10.3906/kim-2106-53
AMA YÜKSEK M,AKALIN M,SANCAK E,İşgören e,atak o,SALTIK D,Beyit A Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. . 2021; 1997 - 2006. 10.3906/kim-2106-53
Vancouver YÜKSEK M,AKALIN M,SANCAK E,İşgören e,atak o,SALTIK D,Beyit A Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. . 2021; 1997 - 2006. 10.3906/kim-2106-53
IEEE YÜKSEK M,AKALIN M,SANCAK E,İşgören e,atak o,SALTIK D,Beyit A "Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method." , ss.1997 - 2006, 2021. 10.3906/kim-2106-53
ISNAD YÜKSEK, METIN vd. "Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method". (2021), 1997-2006. https://doi.org/10.3906/kim-2106-53
APA YÜKSEK M, AKALIN M, SANCAK E, İşgören e, atak o, SALTIK D, Beyit A (2021). Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. Turkish Journal of Chemistry, 45(6), 1997 - 2006. 10.3906/kim-2106-53
Chicago YÜKSEK METIN,AKALIN MEHMET,SANCAK Erhan,İşgören erkan,atak onur,SALTIK DERYA,Beyit Ali Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. Turkish Journal of Chemistry 45, no.6 (2021): 1997 - 2006. 10.3906/kim-2106-53
MLA YÜKSEK METIN,AKALIN MEHMET,SANCAK Erhan,İşgören erkan,atak onur,SALTIK DERYA,Beyit Ali Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. Turkish Journal of Chemistry, vol.45, no.6, 2021, ss.1997 - 2006. 10.3906/kim-2106-53
AMA YÜKSEK M,AKALIN M,SANCAK E,İşgören e,atak o,SALTIK D,Beyit A Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. Turkish Journal of Chemistry. 2021; 45(6): 1997 - 2006. 10.3906/kim-2106-53
Vancouver YÜKSEK M,AKALIN M,SANCAK E,İşgören e,atak o,SALTIK D,Beyit A Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method. Turkish Journal of Chemistry. 2021; 45(6): 1997 - 2006. 10.3906/kim-2106-53
IEEE YÜKSEK M,AKALIN M,SANCAK E,İşgören e,atak o,SALTIK D,Beyit A "Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method." Turkish Journal of Chemistry, 45, ss.1997 - 2006, 2021. 10.3906/kim-2106-53
ISNAD YÜKSEK, METIN vd. "Silk fiber-based composite nanofiber tissue scaffold produced with electrospinning method". Turkish Journal of Chemistry 45/6 (2021), 1997-2006. https://doi.org/10.3906/kim-2106-53