Yıl: 2021 Cilt: 45 Sayı: 6 Sayfa Aralığı: 2034 - 2045 Metin Dili: İngilizce DOI: 10.3906/kim-2108-14 İndeks Tarihi: 01-07-2022

In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue

Öz:
Titanium dioxide/phthalocyanine $(TiO_2 /Pc), TiO_2$ /fluor containing phthalocyanine $(TiO_2 /FPc)$, and $TiO_2$ /fluor containing cobalt phthalocyanine (TiO2 /FCoPc) had been successfully fabricated by a simple combination of phthalocyanines obtained by insitu synthesis on the surface of TiO2 nanofibers prepared by electrospinning. Scanning electron microscopy micrographs and X-ray diffraction analysis indicated that the phthalocyanines uniformly immobilized on the surface of $TiO_2$ nanofibers. Photocatalytic activity of $TiO_2, TiO_2 /Pc, TiO_2 /FPc, TiO_2 /FCoPc$ nanofibers for methylene blue in water was comparatively investigated firstly by ultravioletvisible absorption measurements with time, and kinetic parameters were calculated. Results indicated that the obtained $TiO_2 /Pc, TiO_2 / FPc and TiO_2 /FCoPc$ exhibited high photocatalytic activity for the degradation of methylene blue and $TiO_2 /FCoPc$ was found the best. It showed similar or higher activities than related studies and can be suggested as a promising candidate for environmental and energy applications.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Correia VM, Stephenson T, Judd S. Characterisation of textile wastewaters. Environmental Technology 1994; 15: 917-929. doi:10.1080/09593339409385500
  • 2. Weber EJ, Adams RL. Chemical-and sediment-mediated reduction of the azo dye disperse blue 79. Environmental Science & Technology 1995; 29: 1163-1170.
  • 3. Liu T, Hu T, Hu C, Lang JP, Synthesis, crystallographic characterization of a novel iron porphyrinate and its application as a photocatalyst for degradation of methylene blue under visible light irradiation. Inorganic Chemistry Communication 2018; 90: 26-28. doi: 10.1016/j. inoche.2018.01.027
  • 4. Dutta K, Mukhopadhyay S, Bhattacharjee S, Chaudhuri B. Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials 2001; 84: 57-71. doi: 10.1016/S0304-3894(01)00202-3
  • 5. Körbahti BK, Artut K, Geçgel C, Özer A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. Chemical Engineering Journal 2011; 173: 677-688. doi: 10.1016/j.cej.2011.02.018
  • 6. Chatzisymeon E, Xekoukoulotakis NP, Coz A, Kalogerakis N, Mantzavinos D. Electrochemical treatment of textile dyes and dyehouse effluents. Journal of Hazardous Materials 2006; 137: 998-1007. doi: 10.1016/j.jhazmat.2006.03.032
  • 7. Saratale R, Saratale G, Kalyani D, Chang JS, Govindwar S. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresource Technology 2009; 100: 2493-2500. doi: 10.1016/j.biortech.2008.12.013
  • 8. Gupta VK, Pathania D, Agarwal S, Singh P. Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light. Journal of Hazardous Materials 2012; 243: 179-186. doi: 10.1016/j.jhazmat.2012.10.018
  • 9. Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Applied Catalysis B: Environmental 2006; 63: 305-312. doi: 10.1016/j.apcatb.2005.10.018
  • 10. Jiang RB, Li BX, Fang CH, Wang JF. Metal/semiconductor hybrid nanostructures for plasmon‐enhanced applications. Advanced Materials 2014; 26: 5274-5309. doi: 10.1002/adma.201400203
  • 11. Linsebigler AL, Lu GQ, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews 1995; 95: 735-738.
  • 12. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chemical Reviews 1995; 95: 69-96.
  • 13. Bayrak R, Albay C, Koç M, Altın İ, Değirmencioğlu İ et al. Preparation of phthalocyanine/$TiO_2$ nanocomposites for photocatalytic removal of toxic Cr(VI) ions. Process Safety and Environmental Protection 2016; 102: 294-302. doi: 10.1016/j.psep.2016.03.023
  • 14. Mahmiani Y, Sevim AM, Gül A. Photocatalytic degradation of 4-chlorophenol under visible light by using $TiO_2$ catalysts impregnated with Co(II) and Zn(II) phthalocyanine derivatives. Journal of Photochemistry and Photobiology A: Chemistry 2016; 321: 24-32. doi:10.1016/j. jphotochem.2015.12.015
  • 15. Mahmiani Y., Sevim AM, Gül A. Photocatalytic degradation of persistent organic pollutants under visible irradiation by $TiO_2$ catalysts sensitized with Zn(II) and Co(II) tetracarboxy-phthalocyanines. Journal of Porphyrins and Phthalocyanines 2016; 20: 1190-1199. doi: 10.1142/S108842461650084X
  • 16. Wieder ME, Hone DC, Cook MJ, Handsley MM, Gavrilovic J et al. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’. Photochemical and Photobiological Sciences 2006; 5: 727-734. doi: 10.1039/B602830F
  • 17. Hone DC, Walker PI, Evans-Gowing R, FitzGerald S, Beeby A et al. Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy. Langmuir 2002; 18: 2985-2987. doi: 10.1021/la0256230
  • 18. Koca A, Özçeşmeci M, Hamuryudan E. Substituents effects to the electrochemical, and in situ spectroelectrochemical behavior of metallophthalocyanines: Electrocatalytic application for hydrogen evolution reaction. Electroanalysis 2010; 22 (14): 1623-1633. doi: 10.1002/elan.200900545
  • 19. Carrión EN, Loas A, Patel HH, Pelmus M, Ramji K et al. Fluoroalkyl phthalocyanines: Bioinspired catalytic materials. Journal of Porphyrins and Phthalocyanines 2018; 22: 371-397. doi: 10.1142/S1088424618500189
  • 20. Qiu T, Xu X, Qian X. Fluorous biphase oxidation of ethyl benzeneand benzyl alcohol catalyzed by perfluoroalkylphthalocyanine complexes. Journal of Chemical Technology and Biotechnology. 2009; 84: 1051-1055. doi: 10.1002/jctb.2132
  • 21. Aktaş A, Pişkin M, Durmuş M, Bıyıklıoğlu Z, Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents. Journal of Luminescence 2014; 145: 899-906. doi: 10.1016/j.jlumin.2013.09.019
  • 22. Aktaş A, Acar İ, Saka ET, Bıyıklıoğlu Z, Kantekin H. Fluoro functional groups substituted cobalt(II), iron(II) phthalocyanines and their catalytic properties on benzyl alcohol oxidation. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2016; 86: 183-190. doi: 10.1007/s10847-016-0650-z
  • 23. Özçeşmeci M, Nar I, Hamuryudan E. Synthesis and electrochemical and spectroelectrochemical characterization of chloromanganese (III) phthalocyanines. Turkish Journal of Chemistry 2014; 38: 1064-1072. doi: 10.3906/kim-1405-43
  • 24. Schollhorn B, Germain JP, Pauly A, Maleysson C, Blanc JP. Influence of peripheral electron-withdrawing substituents on the conductivity of zinc phthalocyanine in the presence of gases. Part 1: reducing gases. Thin Solid Films 1998; 326: 245-250. doi: 10.1016/S0040- 6090(98)00553-7
  • 25. Özçeşmeci M, Özkan E, Hamuryudan E. Synthesis, characterization, and aggregation properties of functionalized polyfluorinated metallophthalocyanines. Journal of Porphyrins and Phthalocyanines 2013; 17: 972-979. doi: 10.1142/S1088424613500764
  • 26. Handa M, Suzuki A, Shoji S, Kasuga K, Sogabe K. Spectral and electrochemical properties of vanadyl hexadecafluorophthalocyanine. Inorganica Chimica Acta 1995; 230: 41-44. doi: 10.1016/0020-1693(94)04188-2
  • 27. Koca A, Özkaya A, Selçukoğlu M, Hamuryudan E. Electrochemical and spectroelectrochemical characterization of the phthalocyanines with pentafluorobenzyloxy substituents. Electrochimica Acta 2007; 52: 2683-2690. doi: 10.1016/j.electacta.2006.09.025
  • 28. Özçeşmeci M, Özçeşmeci I, Sorar I, Hamuryudan E. Thin films of fluorinated groups substituted metallophthalocyanines as an optical material. Inorganic Chemistry Communication 2017; 86: 209-212. doi: 10.1016/j.inoche.2017.10.026
  • 29. Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique Biotechnology Advances 2010; 28: 325-347. doi: 10.1016/j. biotechadv.2010.01.004
  • 30. Li X, Chen W, Qian Q, Huang H, Chen Y et al. Electrospinning-based strategies for battery materials. Advanced Functional Materials 2021; 11: 202000845. doi: 10.1002/aenm.202000845
  • 31. Cui J, Lu T, Li F, Wang Y, Lei J et al. Flexible and transparent composite nanofibre membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture. Journal of Colloid and Interface Science 2021; 582: 506-514. doi: 10.1016/j. jcis.2020.08.075
  • 32. Ray SS, Chen SS, Li CW, Nguyen NC, Nguyen HT. A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances 2016; 6: 85495-85514. doi: 10.1039/C6RA14952A
  • 33. Ejaz F, Boor A, Lalia S, Hashaikeh R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015; 356: 15-30. doi: doi.org/10.1016/j.desal.2014.09.033
  • 34. Esenturk İ, Gümrükçü S, Sert ABÖ, Kök FN, Döşler S et al. Silk-fibroin-containing nanofibers for topical sertaconazole delivery: preparation, characterization, and antifungal activity. International Journal of Polymeric Materials and Polymeric Biomaterials 2021; 70(9): 605-622. doi: 10.1080/00914037.2020.1740992
  • 35. Uçar N, Nesrin Demirsoy N, Önen A, Karacan İ, Kızıldağ N et al. The effect of reduction methods and stabilizer (PVP) on the properties of polyacrylonitrile (PAN) composite nanofibers in the presence of nanosilver. Journal of Materials Science 2015; 50: 1855-1864. doi: 10.1007/s10853-014-8748-4
  • 36. Lu L, Yang B, Zhai Y, Liu J. Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 2020; 76: 104966. doi: 10.1016/j.nanoen.2020.104966
  • 37. Gümrükçü S, Soprunyuk V, Saraç B, Yüce E, Eckert J et al. Electrospun polyacrylonitrile/2-(acryloyloxy)ethyl ferrocenecarboxylate polymer blend nanofibers. Molecular Systems Design & Engineering 2021; 6: 476-492. doi: 10.1039/d1me00008j
  • 38. Han C, Zhang M, Cao WQ, Cao MS. Electrospinning and in-situ hierarchical thermal treatment to tailor $C–NiCo_2O_4$ nanofibers for tunable microwave absorption. Carbon 2021; 171: 953-962. doi: 10.1016/j.carbon.2020.09.067
  • 39. Vallejo W, Diaz-Uribe C, Cantillo A. Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry 2015; 299: 80-86. doi:10.1016/j. jphotochem.2014.11.009
  • 40. Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials 2010; 177: 70-80. doi: 10.1016/j.jhazmat.2009.12.047
  • 41. Zor S, Budak B. Investigation of the effect of PAn and PAn/ZnO photocatalysts on 100% degradation of Congo red under UV visible light irradiation and lightless environment. Turkish Journal of Chemistry 2020; 44: 486-501. doi:10.3906/kim-1907-30
  • 42. Zhang M, Shao C, Guo Z, Zhang Z, Mu J et al. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun $TiO_2$ Nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Applied Materials & Interfaces 2011; 3: 369- 377. doi: 10.1021/am100989a
  • 43. Berki P, Reti B, Terzi K, Bountas I, Horvath E et al. The effect of titania precursor on the morphology of prepared TiO2 /MWCNT nanocomposite materials, Physica Status Solidi (B): Basic Research 2014; 251(12): 2384-2388. doi: 10.1002/pssb.201451161
  • 44. Kuzumoto Y, Matsuyama H, Kitamura M. Structural and electrical properties of fluorinated copper phthalocyanine toward organic photovoltaics: Post-annealing effect under pressure. Japanese Journal of Applied Physics 2014; 53: 04ER16. doi: 10.7567/JJAP.53.04ER16
  • 45. Soliman HS, El-Barry AMA, Khosifan NM, El Nahass MM. Structural and electrical properties of thermally evaporated cobalt phthalocyanine (CoPc) thin films. The European Physical Journal Applied Physics 2007; 37: 1-9. doi: 10.1051/epjap:2006135
  • 46. Basova TV, Kiselev VG, Dubkov IS, Latteyer F, Gromilov SA et al. Optical spectroscopy and XRD study of molecular orientation, polymorphism, and phase transitions in fluorinated vanadyl phthalocyanine thin films. Journal of Physical Chemistry C 2013; 117: 7097- 7106. doi: 10.1021/jp4016257
  • 47. Vasiljevic ZZ, Dojcinovic MP, Vujancevic JD, Jankovic-Castvan I, Ognjanovic M et al. Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method. Royal Society Open Science 2020; 7: 200708. doi: 10.1098/rsos.200708
  • 48. Liu G, Liu S, Lu Q, Sun H, Xiu Z. BiVO4 /cobalt phthalocyanine (CoPc) nanofiber heterostructures: synthesis, characterization and application in photodegradation of methylene blue. RSC Advances 2014; 4: 53402-53406. doi: 10.1039/c4ra08759c
  • 49. Wan Y, Liang Q, Cong T, Wang X, Tao Y et al. Novel catalyst of zinc tetraamino-phthalocyanine supported by multi-walled carbon nanotubes with enhanced visible-light photocatalytic activity. RSC Advances 2015; 5: 66286-66293. doi: 10.1039/c5ra10462a
  • 50. Guo Z, Shao C, Mu J, Zhang M, Zhang Z et al. Controllable fabrication of cadmium phthalocyanine nanostructures immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic properties under visible light. Catalysis Communications 2011; 12: 880-885. doi: 10.1016/j.catcom.2011.02.004
  • 51. Wu CH, Chern JM. Kinetics of photocatalytic decomposition of methylene blue. Industrial & Engineering Chemistry Research 2006; 45: 6450-6457. doi: 10.1021/ie0602759
  • 52. Guo Z, Chen B, Mu J, Zhang M, Zhang P et al. Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with $H_2O_2$. Journal of Hazardous Materials 2012; 219-220: 156-163. doi: 10.1016/j.jhazmat.2012.03.068
  • 53. Cabir B, Yurderi M, Caner N, Agirtas MS, Zahmakiran M et al. Methylene blue photocatalytic degradation under visible light irradiation on copper phthalocyanine-sensitized $TiO_2$ nanopowders. Materials Science and Engineering B 2017; 224: 9-17. doi: 10.1016/j. mseb.2017.06.017
  • 54. Zhang M, Shao C, Guo Z, Zhang Z, Mu J et al. Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres. ACS Applied Materials & Interfaces 2011; 3: 2573-2578. doi: 10.1021/am200412t
  • 55. Li K, Pang Y, Lu Q. In situ growth of copper(II) phthalocyanine sensitized electrospun $CeO_2/Bi_2 MoO_6$ nanofibers: a highly efficient photoelectrocatalyst towards degradation of tetracycline. Inorganic Chemistry Frontiers 2019; 6: 3215-3224. doi: 10.1039/c9qi00950g
APA Gümrükçü S, Ozcesmeci M, Sezer E, Ustamehmetoglu B, Hamuryudan E (2021). In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. , 2034 - 2045. 10.3906/kim-2108-14
Chicago Gümrükçü Selin,Ozcesmeci Mukaddes,Sezer Esma,Ustamehmetoglu Belkis,Hamuryudan Esin In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. (2021): 2034 - 2045. 10.3906/kim-2108-14
MLA Gümrükçü Selin,Ozcesmeci Mukaddes,Sezer Esma,Ustamehmetoglu Belkis,Hamuryudan Esin In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. , 2021, ss.2034 - 2045. 10.3906/kim-2108-14
AMA Gümrükçü S,Ozcesmeci M,Sezer E,Ustamehmetoglu B,Hamuryudan E In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. . 2021; 2034 - 2045. 10.3906/kim-2108-14
Vancouver Gümrükçü S,Ozcesmeci M,Sezer E,Ustamehmetoglu B,Hamuryudan E In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. . 2021; 2034 - 2045. 10.3906/kim-2108-14
IEEE Gümrükçü S,Ozcesmeci M,Sezer E,Ustamehmetoglu B,Hamuryudan E "In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue." , ss.2034 - 2045, 2021. 10.3906/kim-2108-14
ISNAD Gümrükçü, Selin vd. "In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue". (2021), 2034-2045. https://doi.org/10.3906/kim-2108-14
APA Gümrükçü S, Ozcesmeci M, Sezer E, Ustamehmetoglu B, Hamuryudan E (2021). In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. Turkish Journal of Chemistry, 45(6), 2034 - 2045. 10.3906/kim-2108-14
Chicago Gümrükçü Selin,Ozcesmeci Mukaddes,Sezer Esma,Ustamehmetoglu Belkis,Hamuryudan Esin In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. Turkish Journal of Chemistry 45, no.6 (2021): 2034 - 2045. 10.3906/kim-2108-14
MLA Gümrükçü Selin,Ozcesmeci Mukaddes,Sezer Esma,Ustamehmetoglu Belkis,Hamuryudan Esin In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. Turkish Journal of Chemistry, vol.45, no.6, 2021, ss.2034 - 2045. 10.3906/kim-2108-14
AMA Gümrükçü S,Ozcesmeci M,Sezer E,Ustamehmetoglu B,Hamuryudan E In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. Turkish Journal of Chemistry. 2021; 45(6): 2034 - 2045. 10.3906/kim-2108-14
Vancouver Gümrükçü S,Ozcesmeci M,Sezer E,Ustamehmetoglu B,Hamuryudan E In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue. Turkish Journal of Chemistry. 2021; 45(6): 2034 - 2045. 10.3906/kim-2108-14
IEEE Gümrükçü S,Ozcesmeci M,Sezer E,Ustamehmetoglu B,Hamuryudan E "In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue." Turkish Journal of Chemistry, 45, ss.2034 - 2045, 2021. 10.3906/kim-2108-14
ISNAD Gümrükçü, Selin vd. "In-situ synthesis of phthalocyanines on electrospun $TiO_2$nanofiber by solvothermal process for photocatalytic degradation of methylene blue". Turkish Journal of Chemistry 45/6 (2021), 2034-2045. https://doi.org/10.3906/kim-2108-14