Yıl: 2022 Cilt: 30 Sayı: 3 Sayfa Aralığı: 730 - 749 Metin Dili: İngilizce DOI: 10.3906/elk-2105-210 İndeks Tarihi: 01-07-2022

Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method

Öz:
In this paper, a periodic-MoM-based code with high accuracy performance is developed to calculate electromagnetic scattering from a periodic conductive surface in two dimensions with any degree of roughness. Firstly, the existing separate methods in the literature are reviewed step by step to compose a periodic-MoM solution for 2-D periodic surfaces. Then, the dynamic selection of optimal formulation of the periodic-MoM solutions created using these existing methods is evaluated to reduce solution time and obtain high accuracy. In this study, the performance parameters of the existing methods are investigated in solving a real 3-D scattering problem by a periodic-MoM for the first time in the literature. Eventually, a commercial EM solver with a similar numerical approach is employed for comparison, validation, and accuracy achievements of these different periodic-MoM formulations. Furthermore, an analytical solution named Floquet mode-matching method (FMMM) is developed based on the Rayleigh hypothesis for slightly rough surfaces, and the accuracy of the code is tested using this analytical solution. This study is entirely compatible with analytical solutions and gives better results than this commercial EM solver in terms of accuracy. Also, the FMMM formulation derived for comparison provides a more straightforward solution than the small perturbation method (SPM), a classical solution method, and it is adapted to two-dimensional surface roughness for the first time in this paper. However, this full-wave solution has no restriction on surface roughness, unlike the analytical solutions
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Rice SO. Reflection of electromagnetic waves from slightly rough surfaces. Communications on Pure and Applied Mathematics 1951; 4 (2–3): 351-378. doi:10.1002/cpa.3160040206.
  • [2] Millar RF. On the Rayleigh assumption in scattering by a periodic surface. II. Mathematical Proceedings of the Cambridge Philosophical Society 1971; 69 (1): 217-225. doi:10.1017/S0305004100046570
  • [3] Johnson JT. Third-order small-perturbation method for scattering from dielectric rough surfaces.Journal of the Optical Society of America A 1999; 16 (11): 2720-2736. doi:10.1364/josaa.16.002720
  • [4] Demir MA, Johnson JT. Fourth and higher order small perturbation solution for scattering from dielectric rough surfaces. Journal of the Optical Society of America A 2003; 20 (12): 2330-2337. doi:10.1364/JOSAA.20.002330
  • [5] Guo LX, Liang Y, Li J, Wu ZS. A high order integral SPM for the conducting rough surface scattering with the tapered wave incidence-TE case. Progress in Electromagnetics Research 2011; 114 :333-352. doi:10.2528/PIER11011605
  • [6] Ishimaru A. Periodic Structures and Coupled-Mode Theory. In: Electromagnetic Wave Propagation, Radiation, and Scattering. Piscataway, NJ 08854, USA: Wiley-IEEE Press, 2017, pp. 201-231. doi:10.1002/9781119079699.ch7
  • [7] Norman A, Nyquist DP, Rothwell E, Chen KM, Ross J et al. Transient scattering of a short pulse from a conducting sinusoidal surface. Journal of Electromagnetic Waves and Applications 1996; 10 (4): 461-487. doi:10.1163/156939396X01062
  • [8] Thorsos EI. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America 1988; 83 (1): 78-92. doi:10.1121/1.396188
  • [9] West JC. On the Control of Edge Diffraction in Numerical Rough Surface Scattering Using Resistive Tapering. IEEE Transactions on Antennas and Propagation 2003; 51 (11): 3180-3183. doi:10.1109/TAP.2003.818775
  • [10] Spiga P, Soriano G, Saillard M. Scattering of electromagnetic waves from rough surfaces: A boundary integral method for low-grazing angles. IEEE Transactions on Antennas and Propagation 2008; 56 (7): 2043-2050. doi:10.1109/TAP.2008.924710
  • [11] Chen R, West JC. Analysis of Scattering from Rough Surfaces at Large Incidence Angles Using a PeriodicSurface Moment Method. IEEE Transactions on Geoscience and Remote Sensing 1995; 33 (5): 1206-1213. doi:10.1109/36.469484
  • [12] DeSanto J, Erdmann G, Hereman W, Krause B, Misra M et al. Theoretical and computational aspects of scattering from periodic surfaces: Two-dimensional perfectly reflecting surfaces using the spectral-coordinate method. Waves Random Media 2001; 11 (4):455-487. doi:10.1088/0959-7174/11/4/306
  • [13] Barzegar-Parizi S, Shishegar AA. Electromagnetic wave scattering analysis from 2-D periodic rough surfaces using complex images technique. IEEE Transactions on Geoscience and Remote Sensing 2015; 53 (2):862-868. doi:10.1109/TGRS.2014.2329995
  • [14] Yildiz S, Altuncu Y, Ozdemir O. Scattering of Electromagnetic Waves by Periodic Rough Surfaces. IEEE Transactions on Geoscience and Remote Sensing 2008; 46 (9):2599-2606.
  • [15] Wang D, Yung EKN, Chen RS, Ding DZ, Tang WC. On evaluation of the green function for periodic structures in layered media. IEEE Antennas and Wireless Propagation Letters 2004; 3 (1): 133-136. doi:10.1109/LAWP.2004.831076
  • [16] Capolino F, Wilton DR, Johnson WA. Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method. IEEE Transactions on Antennas and Propagation 2005; 53 (9): 2977-2984. doi:10.1109/TAP.2005.854556
  • [17] Park MJ, Lee B. Efficient calculation of the Green’s function for 2-D periodic line sources using Ewald method. IEEE Antennas and Wireless Propagation Letters 2009; 8 (4): 565-567. doi:10.1109/LAWP.2009.2022652
  • [18] Lampe R, Klock P, Mayes P. Integral Transforms Useful for the Accelerated Summation of Periodic, FreeSpace Green’s Functions. IEEE Transactions on Microwave Theory and Techniques 1985; 33 (8): 734-736. doi:10.1109/TMTT.1985.1133067
  • [19] Singh S, Richards WF, Zinecker JR, Wilton DR. Communications: Accelerating the Convergence of Series Representing the Free Space Periodic Green’s Function. IEEE Transactions on Antennas and Propagation 1990; 38 (12): 1958-1962. doi:10.1109/8.60985
  • [20] Valerio G, Baccarelli P, Burghignoli P, Galli A. Comparative analysis of acceleration techniques for 2-D and 3- D Green’s functions in periodic structures along one and two directions. IEEE Transactions on Antennas and Propagation 2007; 55 (6): 1630-1643.doi:10.1109/TAP.2007.897340
  • [21] Jordan KE, Richter GR, Sheng P. An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures. Journal of Computational Physics 1986; 63 (1): 222-235. doi:10.1016/0021-9991(86)90093- 8
  • [22] Stevanović I, Crespo-Valero P, Blagović K, Bongard F, Mosig JR. Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the ewald transformation. IEEE Transactions on Microwave Theory and Techniques 2006; 54 (10): 3688-3697. doi:10.1109/TMTT.2006.882876
  • [23] Simon PS. Modified RWG basis functions for analysis of periodic structures. IEEE MTT-S International Microwave Symposium Digest; Seattle, WA, USA; 2002.pp. 2029-2032. doi:10.1109/MWSYM.2002.1012266
  • [24] Hu FG, Song J. Integral-equation analysis of scattering from doubly periodic array of 3-D conducting objects. IEEE Transactions on Antennas and Propagation 2011; 59 (12): 4569-4578. doi:10.1109/TAP.2011.2165466
  • [25] Millar RF. The Rayleigh hypothesis and a related least‐squares solution to scattering problems for periodic surfaces and other scatterers. Radio Science 1973; 8 (8-9): 785-796. doi:10.1029/RS008i008p00785
  • [26] Wilton DR, Rao SSM, Glisson AW. Electromagnetic Scattering By Surfaces of Arbitrary Shape. IEEE Transactions on Antennas and Propagation 1982; 30 (3): 409-418. doi:10.1109/TAP.1982.1142818
  • [27] Dunavant DA. High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle. International Journal for Numerical Methods in Engineering 1985; 21: 1129–1148. doi:10.1002/nme.1620210612
  • [28] Graglia RD. On the Numerical Integration of the Linear Shape Functions Times the 3-D Green’s Function or its Gradient on a Plane Triangle. IEEE Transactions on Antennas and Propagation 1993; 41 (10): 1448-1455. doi:10.1109/8.247786
  • [29] Duffy MG. Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex. SIAM Journal on Numerical Analysis 1982; 19 (6): 1260-1262. doi:10.1137/0719090
  • [30] Wilton DR, Wilton DR, Rao SM, Glisson AW et al. Potential Integrals for Uniform and Linear Source Distributions on Polygonal and Polyhedral Domains. IEEE Transactions on Antennas and Propagation 1984; 32 (3): 276-281. doi:10.1109/TAP.1984.1143304
  • [31] Eibert TF, Hansen V. On the Calculation of Potential Integrals for Linear Source Distributions on Triangular Domains. IEEE Transactions on Antennas and Propagation 1995; 43 (12): 1499-1502. doi:10.1109/8.475946
  • [32] Stevanoviæ I, Mosig JR. Periodic Green’s Function for Skewed 3-D Lattices Using the Ewald Transformation. Microwave and Optical Technology Letters 2007; 49 (6): 1353-1357. doi:10.1002/mop.22429
  • [33] Khayat MA, Wilton DR. Numerical Evaluation of Singular and Near-Singular Potential Integrals. IEEE Transactions on Antennas and Propagation 2005; 53 (10): 3180-3190. doi:10.1109/TAP.2005.856342
  • [34] Adanir S, Alatan L. Singularity Cancellation for Accurate MoM Analysis of Periodic Planar Structures in Layered Media. IEEE Antennas Wirel Propag Lett. 2020; 19 (8): 1301-1305. doi:10.1109/LAWP.2020.2997798
  • [35] Van Tonder J, Jakobus U. Infinite periodic boundary conditions in FEKO. Applied Computational Electromagnetic Society Journal. 2009; 24:584–591.
APA Yamac Y, KIZILAY A (2022). Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . , 730 - 749. 10.3906/elk-2105-210
Chicago Yamac Yunus Emre,KIZILAY AHMET Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . (2022): 730 - 749. 10.3906/elk-2105-210
MLA Yamac Yunus Emre,KIZILAY AHMET Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . , 2022, ss.730 - 749. 10.3906/elk-2105-210
AMA Yamac Y,KIZILAY A Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . . 2022; 730 - 749. 10.3906/elk-2105-210
Vancouver Yamac Y,KIZILAY A Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . . 2022; 730 - 749. 10.3906/elk-2105-210
IEEE Yamac Y,KIZILAY A "Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method ." , ss.730 - 749, 2022. 10.3906/elk-2105-210
ISNAD Yamac, Yunus Emre - KIZILAY, AHMET. "Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method ". (2022), 730-749. https://doi.org/10.3906/elk-2105-210
APA Yamac Y, KIZILAY A (2022). Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . Turkish Journal of Electrical Engineering and Computer Sciences, 30(3), 730 - 749. 10.3906/elk-2105-210
Chicago Yamac Yunus Emre,KIZILAY AHMET Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . Turkish Journal of Electrical Engineering and Computer Sciences 30, no.3 (2022): 730 - 749. 10.3906/elk-2105-210
MLA Yamac Yunus Emre,KIZILAY AHMET Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . Turkish Journal of Electrical Engineering and Computer Sciences, vol.30, no.3, 2022, ss.730 - 749. 10.3906/elk-2105-210
AMA Yamac Y,KIZILAY A Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . Turkish Journal of Electrical Engineering and Computer Sciences. 2022; 30(3): 730 - 749. 10.3906/elk-2105-210
Vancouver Yamac Y,KIZILAY A Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method . Turkish Journal of Electrical Engineering and Computer Sciences. 2022; 30(3): 730 - 749. 10.3906/elk-2105-210
IEEE Yamac Y,KIZILAY A "Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method ." Turkish Journal of Electrical Engineering and Computer Sciences, 30, ss.730 - 749, 2022. 10.3906/elk-2105-210
ISNAD Yamac, Yunus Emre - KIZILAY, AHMET. "Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method ". Turkish Journal of Electrical Engineering and Computer Sciences 30/3 (2022), 730-749. https://doi.org/10.3906/elk-2105-210